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Abstract
Automotive apps can improve efficiency, safety, comfort,

and longevity of vehicular use. These apps achieve their
goals by continuously monitoring sensors in a vehicle, and
combining them with information from cloud databases in
order to detect events that are used to trigger actions (e.g.,
alerting a driver, turning on fog lights, screening calls).How-
ever, modern vehicles have several hundred sensors that de-
scribe the low level dynamics of vehicular subsystems, these
sensors can be combined in complex ways together with
cloud information. Moreover, these sensor processing algo-
rithms may incur significant costs in acquiring sensor and
cloud information. In this paper, we propose a programming
framework calledCARLOG to simplify the task of program-
ming these event detection algorithms.CARLOG uses Data-
log to express sensor processing algorithms, but incorporates
novel query optimization methods that can be used to mini-
mize bandwidth usage, energy or latency, without sacrificing
correctness of query execution. Experimental results on a
prototype show thatCARLOG can reduce latency by nearly
two orders of magnitude relative to an unoptimized Datalog
engine.
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1 Introduction
Many mobile app marketplaces feature automotive app-

s that provide in-car infotainment, or record trip informa-
tion for later analysis. With the development of systems like
Mercedes-Benz mbrace [37], Ford Sync [21], and GM On-
Star [23], it is clear that auto manufacturers see significant
value in integrating mobile devices into the car’s electronic
ecosystem as a way of enhancing the automotive experience.
Because of this development, in the near future we are likely
to see many more automotive apps in mobile marketplaces.

An important feature of automobiles that is likely to play a
significant part in the development of future automotive app-
s is the availability of a large number of vehicular sensors.
These sensors describe the instantaneous state and perfor-
mance of many subsystems inside a vehicle, and represent a
rich source of information, both for assessing vehicle behav-
ior and driver behavior. At the same time, there has been
an increase on the availability of cloud-based information
that governs the behavior of vehicles: topology and terrain,
weather, traffic conditions, speed restrictionsetc.

As such, we expect that future automotive apps will likely
combine vehicular sensors with cloud-based information as
well as sensors on the mobile device itself to enhance the per-
formance, safety, comfort, or efficiency of vehicles (§2). For
example, apps can monitor vehicular sensors, GPS location,
and traffic and weather information to determine whether the
car is being driven dangerously, and then take appropriate
action (e.g.,screen calls, alert the driver). Similarly, an app
may be able to warn drivers of impending rough road con-
ditions, based both on the availability of cloud-based road
surface condition maps and an analysis of vehicle comfort
settings (e.g.,suspension stiffness).

In this paper, we consider automotive apps that combine
sensor and cloud information. Many of these apps can be
modeled as continuously processing vehicular sensors with
cloud information, in order to detectevents. In the exam-
ples above, a car being driven dangerously, or over a patch
of rough road, constitutes an event, and sensor processing al-
gorithms continuously evaluate sensor readings to determine
when an event occurs or to anticipate event occurrence.

In this setting, programming the algorithms that combine
sensor and cloud information can be challenging. Because
cars can have several hundred sensors each of which de-
scribes low-level subsystem dynamics, and the cloud-based
information can be limitless, determining the right combina-



tions of sensors and cloud information to detect events can
be challenging. For instance, whether someone is driving
dangerously can depend not just on vehicle speed, but on
road curvature, the speed limit, the road surface conditions,
traffic, visibility etc.

As such, programmers will likely need to build their even-
t detectors in a layered fashion, first by building lower-level
sensing abstractions, and then combining these abstractions
to develop more sophisticated event detectors. In the exam-
ple above, a programmer can layer the dangerous driving de-
tector by first building an abstraction for whether the driver is
speeding (using car speed sensors and cloud-speed limit in-
formation), then an abstraction for whether this speed is like-
ly to cause the driver to lose control (by analyzing the car’s
turn radius vis-a-vis the curvature of the road), and combine
these two abstractions to design the final detector. Beyond
comprehensibility and ease of programming, this layered ap-
proach has the benefit of re-use: sensor abstractions can be
re-used in multiple situations. For example, the abstraction
for analyzing whether driving speed is likely to cause a driv-
er to lose control can be used in an app that tells drivers what
speed to take an impending curve on the road. Finally, many
of these event detectors may need to be tailored to individ-
ual users, since different users have different tolerancesfor
safety, comfort, and performance.

To address this challenge, we observe that a declarative
logic-based language like Datalog [47] has many of the de-
sirable properties discussed above. Datalog is based on the
predicate calculus of first-order logic, and supports negation
of rules. In our use of Datalog (§3), sensors and cloud in-
formation are modeled as (time-varying) facts and applica-
tions define event detectors as rules which are conjunctions
of facts. An event is said to occur at some time instance if
the predicate corresponding to a specific rule is true at that
instant. Because facts can be materialized at different times,
we need to carefully specify the temporal semantics of event
detection. Our use of Datalog addresses the first pain point
in the following way: in Datalog, rules can be expressed in
terms of other rules, allowing a layered definition of rules,
together with re-usability.

A second challenge is having to reason about the costs
of accessing sensors and cloud-based information. Access-
ing cloud information can incur significant latency (sever-
al secondsin our experiments, §4), and designing efficient
sensor algorithms that minimize these costs for every auto-
motive app can be difficult, if not impossible. It is possible
in Datalog for programmers to write rules carefully to im-
prove the efficiency of rule execution. Datalog engines per-
form bottom up evaluation, so a programmer can re-arrange
predicates so that sensor predicates are evaluated first. How-
ever, Datalog engines also perform optimizations to mini-
mize redundancy, but because these engines are unaware of
the costs of acquiring predicates, an engine may foil these
programmer-directed optimizations. More generally, expect-
ing mobile app developers to reason about this cost can in-
crease programming burden significantly.

To address this challenge, we have developed automat-
ic optimization methods for rule evaluation that attempt to
minimize latency (§4). These methods are transparent to the

programmer. In particular, our optimization algorithm re-
orders fact assessment (determining facts from sensors or the
cloud) to minimize the expected latency of rule evaluation.
To do this, it leverages short-circuit evaluation of Boolean
predicates. The expected cost is derived froma priori proba-
bilities of predicates being true, where these probabilities are
obtained from training data. During the process of predicate
evaluation and short-circuiting, the optimizer also reduces
worst-case latency by evaluating cloud predicates in paral-
lel when the parallel evaluation latency is cheaper than the
expected residual cost of evaluating the un-processed pred-
icates. More important, its optimization of expected cost is
critical: because queries are continuously evaluated, incur-
ring worst-case latency on every evaluation can cause Data-
log to miss events.

We have embodied these ideas in a programming frame-
work called CARLOG. In CARLOG, multiple mobile app-
s can instantiate Datalog rules, reuse rule definitions, and
can concurrently query the rule base for events.CARLOG
includes several kinds of optimizations including provably-
optimal fact assessment for a single query, and jointly opti-
mized fact assessment for concurrent queries. Experiments
on a prototype ofCARLOG, and trace-driven evaluations on
vehicle data collected over 2,000 miles of driving, shows that
it is two orders of magnitude more efficient than Datalog’s
naïve fact assessment strategy, detects 3− 4× more events
than the naïve strategy, and consistently outperforms other
alternatives, sometimes by 3× (§5). These evaluations also
demonstrate the efficacy of multi-query optimization: with-
out this, latency is 50% higher on average and half the num-
ber of events are detected.

CARLOG is inspired by research in declarative program-
ming, query optimization, and energy-efficient sensor and
context recognition. It differs from prior work in its focuson
latency as the metric to optimize (most prior work on mobile
devices have focused on energy) and in its use of multi-query
optimization (§6).

2 Background and Motivation
Automotive Sensing.Modern cars contain one or more in-
ternal controller area network (CAN) buses interconnecting
the electronic control units (ECUs) that regulate internalsub-
systems [29]. All cars built in the US after 2008 are required
to implement the CAN standard. Cars can have up to 70 E-
CUs, and these communicate using the Controller Area Net-
work (CAN) protocols. ECUs transmit and receive messages
that contain one or more sensor readings that contain infor-
mation about a sensed condition or a system status indica-
tion, or specify a control operation on another ECU. ECUs
generate CAN messages either periodically, or periodically
when a condition is sensed, or in response to sensor value
changes or threshold crossings. The frequency of period-
ic sensing depends upon the specific data requirements for
a vehicle system. Certain types of information may be re-
ported by a module at up to 100Hz, whereas other types of
information may be communicated only at 1-2Hz. Exam-
ples of sensor readings available over the CAN bus include:
vehicle speed, throttle position, transmission lever position,
automatic gear, cruise control status, radiator fan speed,fuel



capacity, and transmission oil temperature.
While the CAN is used for internal communication, it is

possible to export CAN sensor values to an external comput-
er. All vehicles are required to have an On-Board Diagnostic
(OBD-II) [1] port, and CAN messages can be accessed using
an OBD-II port adapter. In this paper, we use a Bluetooth-
capable OBD-II adapter that we have developed in order to
access CAN sensor information from late-model GM vehi-
cles. (Commercial OBD-II adapterscan only access a subset
of the CAN sensors available to us). This capability permit-
s Bluetooth-enabled mobile devices (smartphones, tablets)
to have instantaneous access to internal car sensor informa-
tion. Some modern cars can have several thousand sensors
on-board.

Automotive Apps. The availability of a large number of sen-
sors provides rich information about the behavior of internal
subsystems. This can be used to develop mobile apps for im-
proving the performance, safety, efficiency, reliability,and
comfort of vehicles [20]. Many of these goals can be affect-
ed by other factors: the lifetime of vehicle components can
be affected by severe climate, fuel efficiency by traffic con-
ditions and by terrain, safety by road surface and weather,
and so forth. Increasingly, information about these factors is
available in cloud databases, and because mobile devices are
Internet-enabled, it is possible to conceive of cloud-enabled
mobile apps that combine cloud information with car sensors
in order to achieve the goals discussed above.

In this paper, we focus on such mobile apps, specifically
on event-driven appsthat combine sensor and cloud infor-
mation innear real-time(safety-critical hard real-time tasks
such as collision avoidance or traction control are beyond the
scope of this paper; specialized hardware is needed for these
tasks). This class of apps is distinct from automotive apps
that record car sensor information for analytics (e.g.,for as-
sessing driver behavior, or long-term automotive health).In
other words, detected events are not just meant to be collect-
ed and reviewed later by drivers, but used bynear real-time
apps that either act to alert the driver or perform an action on
their behalf (e.g.,an app might wish to block calls or texts
based on whether a driver is executing a maneuver that re-
quires their attention) or used by crowd-sourcing apps to no-
tify other drivers (e.g.,an app might upload a detected event
indicating an icy road to a cloud service so that other cars
can receive early warning of this hazard). Therefore, in our
setting, detection latency and detection accuracy are impor-
tant design requirements. These two criteria are related: as
we show in §5, poorly designed detectors which incur high
latency can also incur missed detections.

Examples.Consider an app that would like to detect when a
driver is executing a dangerous sharp turn. This information
can be made available to parents or driving instructors, or
used for self-reflection. Detecting a sharp turn can be tricky
because one has to rule out legitimate sharp turns at inter-
sections, or those that follow the curvature of the road. Ac-
cordingly, an algorithm that detects a sharp turn has to access
an online map database to determine whether the vehicle is
at an intersection, or to determine the curvature of the road.
In addition, this algorithm needs access to the sensor that

provides the turn angle of the steering wheel, and a sensor
that determines the yaw rate (or angular velocity about the
vertical axis). Continuously fusing this information can help
determine when a driver is making a sharp turn. Finally, we
note that any such algorithm will include thresholds that de-
termine safe or unsafe sharp turns; these thresholds are often
determined by driver preferences and risk-tolerance.

Consider a second example, an application that would like
to block incoming phone calls or text messages when a driv-
er is driving dangerously. Call blocking can be triggered by
a collection of different sets of conditions: a combinationof
bad weather, and a car speed above the posted speed limit
or bad weather and a sharp turn. This illustrates an event-
driven app, where events can be defined by multiple distinct
algorithms. More important, it also illustrateslayereddefini-
tions of events, where the call block event is defined in terms
of the sharp turn event discussed above. In §5, we describe
several other event-driven apps.
Datalog.Datalog [47] is a natural choice for describing sen-
sor fusion for event-driven apps. It is a highly-mature log-
ic programming language whose semantics are derived from
the predicate calculus of first-order logic. Datalog permits
the specification of conjunctive rules, and supports negation
and recursion, and is often used in information extraction,
integration, and cloud computing [27].
Facts and Rules.Operationally, a Datalog system consists of
two databases: anextensional database(EDB) which con-
tains groundfacts, and anintensional database(IDB) which
consists ofrules. Facts describe knowledge about the ex-
ternal world; in our setting, sensor readings and cloud in-
formation provide facts instantiated in the EDB. Rules are
declarative descriptions of the steps by which one can infer
higher-order information from the facts. Each rule has two
parts, aheadand abody. The head of a rule is anatom, and
the body of a rule is a conjunction of severalatoms. Each
atom consists of apredicate, which has one or more vari-
ables or constants as arguments. Any predicate which is the
head of a rule is called an IDB-predicate, and one that occurs
only in the body of rules is called an EDB-predicate.

For example, the code snippet shown below describes a
rule that defines a dangerous driving event. The head of the
rule contains the predicateDangerousDriving, with four
variables, and the body is a conjunction of several predicates,
some of which are automotive sensors (like theYaw_Rate
and theSteer_Angle) and others access cloud information
such asSpeedLimit. Dangerous driving is said to occur
whenever the yaw rate exceeds 25rad/s, the steering angle
exceeds 15◦, and the vehicle speed exceeds the speed limit
by a factor of more than 1.2. Thus, for example, when the
Yaw_Rate sensor has a value 30rad/s (when this happens, a
factYaw_Rate(30) is instantiated in the EDB), and the steer-
ing angle is 60◦, and car is being driven at 45mph in a 30mph
zone, a new factDangerousDriving(30,60,45,30) is in-
stantiated into the EDB and signals the occurrence of a dan-
gerous driving event.
DangerousDriving(x,y,z,w):-

Yaw_rate(x), x > 15, Steer_Angle(y), y > 45,
Vehicle_Speed(z), SpeedLimit(w),
MULTIPLY(w, 1.2 , a), a < z.



More generally, the head of a rule is true if there exists an
instantiation of values for variables that satisfies the atoms in
the body. As discussed above, one or more atoms in the body
can be a negation, and a rule may be recursively defined (the
head atom may also appear in the body). An atom in the
body of one rule may appear in the head of another rule.
Rule Evaluation and Optimization.Datalog is an elegant
declarative language for describing computations over data,
and aDatalog engineevaluates rules. In general, given a
specific IDB, a Datalog engine will apply these rules to infer
new facts whenever an externally-determined fact is instan-
tiated into the EDB. Datalog also permitsqueries: queries
describe specific rules of interest to a user. For example,
while the IDB may contain several tens or hundreds of rules,
a user may, at a given instant, be interested in evaluating
the DangerousDriving rule. This is expressed as a query
?-DangerousDriving(yaw,angle,speed,limit).

3 CARLOG Design
In this section, we describe the design of a programming

system calledCARLOG that simplifies the development of
event-driven automotive apps.CARLOG models car sensors
and cloud based information as Datalog predicates, and apps
can queryCARLOG to identify events.

Figure 1 shows the internal structure ofCARLOG. The
Sensor Acquisitionand Cloud Acquisitionmodules access
information from the car’s sensors and the cloud, respective-
ly, and provide these to theInterfacemodule in the form of
Datalog facts. TheInterfacemodule takes (1) app-defined
queries and (2) facts from the sensors, and passes these to
a modified Datalog query processing engine that performs
query evaluation.

CARLOG introduces two additional and novel compo-
nents, theQuery Optimizerand theQuery Plan Evaluator.
The Query Optimizer statically analyzes a query’s associat-
ed rules and determines an evaluation plan for rule execution.
Unlike traditional Datalog optimization, the Query Optimiz-
er attempts to minimize query evaluation latency based on
the latency of acquiring cloud information, instead of the
number of rules to be evaluated. The output of the Query
Optimizer is a query plan executed by the Query Plan Eval-
uator. In the remainder of this section, we describeCARLOG
in more detail, and in §4 we discuss the Query Optimizer and
Query Plan Evaluator.
How Apps useCARLOG . Event-driven apps instantiate Dat-
alog rules inCARLOG. Typically, these rules define events
for which an app is interested in receiving notifications. In
Datalog terminology, these rules constitute the IDB. Rules
instantiated by one app may use IDB-predicates (heads of
IDB rules) instantiated by other apps.

Apps can then pose Datalog queries toCARLOG. When
a query is posed,CARLOG first identifies the facts needed to
evaluate the query. Then it continuously evaluates the query
by monitoring when predicates from the relevant sensors be-
come facts. As discussed in the previous section, instantia-
tion of the query predicate as a fact corresponds to the occur-
rence of an event and therefore the interested app is notified
when this occurs. Using this approach to query evaluation
allowsCARLOG to also support multiple concurrent queries.
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Figure 1—CARLOG Design

CARLOG Sensor and Cloud Predicates.CARLOG provides
substantially the same capabilities as Datalog, and inherits
all of its benefits (these are discussed below). Like Data-
log, CARLOG supports conjunction and negation (§5 shows
examples of rules using negation). Unlike Datalog,CARLOG
does not support optimization for recursion: we have left this
to future work, as discussed in §4.

CARLOG extends Datalog to support acquisitional query
processing [36]: the capability to process queries that de-
pend on dynamically instantiated sensor and cloud data. To
do this, sensor and cloud information are modeled as EDB-
predicates; we use the terms sensor predicate and cloud pred-
icate, respectively, to denote the source of the predicate.For
example,Yaw_Rate(x) is a sensor predicate that models the
yaw rate sensor in a vehicle, andSpeedLimit(w) is a cloud
predicate that models the speed limit at the current location
(§2). These predicates are predefined EDB-predicates that
applications can use when defining new rules.
Benefits ofCARLOG . Prior work [20] has proposed a proce-
dural abstraction for programming automotive apps. Com-
pared to such an abstraction,CARLOG is declarative due to
its use of Datalog, so apps can define events without hav-
ing to specify or program sensor or cloud data acquisition.
Furthermore, apps can easily customize rules for individual
users: the dangerous driving rule in §2 has several thresh-
olds (e.g., 45◦ for Steer_Angle), and customizing these is
simply a matter of instantiating a new rule.

Since cars have several hundred sensors and Datalog is
a mature rule processing technology that can support large
rule bases,CARLOG inherits scalability from Datalog. This
scalability comes from several techniques to optimize rulee-
valuation. In general, rule evaluation in Datalog has a long
history of research, and many papers have explored a vari-
ety of techniques for optimizing evaluation [47, 13]. These
techniques have proposed bottom-up evaluation, top-down
evaluation, and a class of the program transformations called
magic sets(§6). All of these approaches seek to minimize
or eliminate redundancy in rule evaluation, and we do not
discuss these optimizations further in this paper. In the next
section, our paper discusses an orthogonal class of optimiza-
tions that have not been explored in the Datalog literature.

CARLOG also inherits other benefits from Datalog. In
CARLOG, rule definitions can include IDB-predicates de-



fined by other apps. As such, rule definitions can be lay-
ered, permitting significant rule re-use and the definition of
increasingly complex events. As discussed in §2,CallBlock
can be defined in terms of aDangerousDriving IDB-
predicate instantiated by another app.

CARLOG also inherits some of Datalog’s limitations:
some sensing computations may require capabilities beyond
Datalog. Consider a predicate defined in terms of the odome-
ter. On some cars, the odometer sensor may not be exposed
to the consumer; apps can approximate odometry by math-
ematically integrating speed sensor values, but this compu-
tation cannot be expressed in Datalog. In this case, we an-
ticipateCARLOG will include a “virtual” odometer sensor as
a Datalog predicate which is implemented in a different lan-
guage (say Java) and integrated into theCARLOG runtime.

4 CARLOG Latency Optimization
In CARLOG, programmers do not need to distinguish sen-

sor and cloud predicates from other EDB-predicates. How-
ever, unlike other Datalog EDB-predicates, sensor and cloud
predicates incur apredicate acquisition latencywhich is the
latency associated with acquiring the data necessary to evalu-
ate the predicate. In this section, we show howCARLOG can
optimize predicate acquisition latency in a mannertranspar-
ent to the programmer.
4.1 Predicate Acquisition Latency
Cloud predicates incur high latency.Like several prior
sensor-based query processing languages (e.g.,[36]), CAR-
LOG supports acquisitional query processing, where sensor
data and cloud information are modeled as predicates, but
may be materialized on-demand. However, an important d-
ifference is that in the automotive environment materializing
cloud predicates can incur significant latency.

To illustrate this, Figure 2 shows the latency incurred
when accessing three different cloud predicates using two
different carriers. The three predicates check, respective-
ly, for whether the current speed exceeds the average traffic
speed reported by Google, whether there are any traffic in-
cidents reported by Bing’s traffic reporting service at a giv-
en location, and whether the current gas price reported by
MyGasFeed exceeds a certain value. (In general,CARLOG
permits cloud predicates implemented by multiple cloud ser-
vices.) In calculating these latencies, we conducted exper-
iments where we drove a car at an average speed of about
30mph (maximum 70 mph) and configured two mobile de-
vices with different carriers to acquire individual predicates.
Figure 2 shows the latency incurred on the cloud side (our
phones queried a server we control, which in turn issued re-
quests to the cloud services listed above), and the network
latency (total request latency minus the cloud latency). Two
features are evident from this figure: (a) cloud latency can
vary significantly across services (MyGasFeed is less mature
than the other two services, so is slower), and (b) network la-
tency is highly variable on both carriers, and several seconds
in the worst case (resulting from handoffs due to high mobil-
ity).
Naive Datalog acquisition can be expensive.Although Dat-
alog provides several benefits for event-driven automotive
apps, its rule evaluation can incur high latency, because the
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default rule evaluation engine is agnostic to acquisition cost
and acquires predicates sequentially. Thus, if a rule involves
multiple cloud predicates, the total predicate acquisition la-
tency is the sum of the latencies required to evaluate each
cloud predicate. As we discuss below, it is possible to opti-
mize this by acquiring all the cloud predicates in parallel,and
the total latency in this case is the maximum latency required
to evaluate a cloud predicate. Even in this case, acquisition
latency can still be on the order of several seconds.

Overview of latency optimization inCARLOG. CARLOG
performs latency optimization by statically analyzing each
query and computing an optimalorder of executionfor the
query’s predicate acquisition. This computation is performed
once, when an application instantiates a query. Subsequent-
ly, whenever a query needs to be re-evaluated (as discussed
above, this happens whenever a value of a sensor changes),
this order of predicate acquisition is followed.

CARLOG’s latency optimization builds upon short-circuit
evaluation of Boolean operators.1 In a conjunctive rule,
if one predicate happens to be false, the other predicates do
not need to be evaluated.CARLOG takes this intuition one
step further, and is based on a key observation about the
automotive setting: some predicates are more likely to be
false than others. Consider our dangerous driving example
in §2. During experiments in which we recorded sensor val-
ues, we found that the predicateYaw_Rate(x),x > 15 was
far more likely to be false thanSteer_Angle(y),y> 45. In-
tuitively, this is because drivers do not normally turn at high
rates of angular velocity (yaw), but do turn (steer) often at
intersections, parking lots,etc. In this case, evaluating the
Yaw_Rate first will avoid the cost of predicate acquisition
for Steer_Angle, thereby incurring a lower overall expect-
ed cost for repeated query execution as compared to when
Steer_Angle is evaluated first.

In general, determining the optimal order of sensor ac-
quisition can be challenging as it depends both on the cloud
predicate acquisition latency and probability of the predicate
being true (in §5, we consider and evaluate several alterna-
tives). If it were less expensive to acquireSteer_Angle than
Yaw_Rate, then the optimal order would depend both upon
the acquisition latency and the probability of a predicate be-
ing true. CARLOG leverages this observation, but for cloud
predicates. Cloud predicates can differ in acquisition cost

1As an aside,CARLOG’s optimizations can be applied to other settings
where predicate acquisition costs differ. We have deferredthis to future
work.



(Figure 2), and some cloud predicates are more likely to be
false than others. Thus, by re-ordering the acquisition of
cloud predicates,CARLOG canshort-circuit the acquisition
of some cloud predicatesor avoid acquisition entirely if any
of the sensor predicates are false.

Estimating predicate probabilities.A key challenge for la-
tency optimization is to estimate the probability of a predi-
cate being true. We estimate these probabilities using train-
ing data, obtained by collecting, for a short while, sensor and
cloud information continuously while a car is being driven.
When an application instantiates a query,CARLOG’s Query
Optimizer statically analyzes the query, extracts the sensor
and cloud predicates, and computes the a priori probability2

of each predicate being true from the training data. For ex-
ample, if the training data hasN samples ofYaw_Rate, but
only n of these are above the threshold of 10, then the cor-
responding probability isn/N. These probabilities, together
with the predicate latencies, are inputs to the optimization
algorithms discussed below. We note that accuracy of the
probability estimates affects only performance, not correct-
ness. One corollary of this is that training data from one driv-
er can be used to estimate probabilities for similar drivers,
without impacting correctness, only performance.

Furthermore, rather than use a priori estimate, we can up-
date cost and predicate probability estimates dynamically,
and predicate evaluation could adapt accordingly (e.g.,if in
a particular area latency of query acquisition is low, or if the
vehicle changes hands and the new driver’s behavior is sig-
nificantly different, the evaluation order could change). We
leave a detailed implementation of this for future work, but
we note that these generalizations would not change the al-
gorithms presented in the paper, but would only change how
the inputs to these algorithms are computed.

Minimizing expected latency.The output of our algorithms
is a predicate acquisition order thatminimizes the expected
latency. Without latency optimizations,CARLOG can miss
events. To understand why, first recall that, inCARLOG, rules
are continuously evaluated. Now, suppose an app defines a
rule based on theYaw_Rate sensor (with a threshold of 15,
as in our example in §2), and a cloud predicate. First, sup-
pose thatYaw_Rate and the cloud predicate have the same
acquisition cost (say 20ms). Then, one can define an ide-
al event detection rate as the rate of detected events if the
rule containing these predicates was evaluated every 20ms.
In practice, however, cloud predicate acquisition cost canbe
higher. Suppose, in our example, that it is 1 second. To eval-
uate a rule, an unoptimized evaluation strategy would wait
until the cloud predicate was acquired (i.e.,wait for one sec-
ond), then evaluate the predicate using the latest value of the
Yaw_Rate sensor. This strategy does not evaluate all other
Yaw_Rate readings (in 1 sec, this sensor reports 50 values),
and some of these readings may have been above the thresh-
old. As such, this unoptimized strategy would have a lower
detection rate than the ideal discussed above; in other words,

2Our predicate estimation technique is similar to branch predictors in
computer architecture: based on a history of driving traces, our approach
estimates the probability of a predicate being true (the analog of a branch
(not) taken).

Probability:

Cost:

Figure 3—Expansion Proof Tree for Rule 2

this strategy can miss events. By optimizing latency,CAR-
LOG can reduce instances of missed events.

Instead of dropping theYaw_Rate sensor readings, a
rule engine can queue each sensor change to be evaluat-
ed sequentially or evaluate each sensor change in parallel.
This is fundamentally infeasible because the arrival rate of
events (50Hz) is higher than the service rate (1Hz). Missing
events is unacceptable, since for some applications the pre-
cise count of events may be important. For example, miss-
ing aDangerousTurn event can, in an app that monitors teen
driving, translate into incorrect estimates of the qualityof the
teen driver). Similarly, a missed icy road condition can, inan
outsourced app, fail to alert other drivers of a dangerous con-
dition. As we quantify later in our experiments,CARLOG’s
latency optimization improves event detections by a factorof
3-4× over Datalog.

Finally, although our algorithms can be used to optimize
energy, a discussion of this is beyond the scope of the paper.

4.2 Terminology and Notation
In Datalog, a query can be represented as aproof tree.

The internal nodes of this proof tree are IDB-predicates, and
the leaves of the proof tree are EDB-predicates. InCARLOG,
leaves represent sensor and cloud EDB-predicates.3 Figure 3
shows the proof tree for the dangerous driving example rule.

In general, a proof tree will have a setG of n leaf pred-
icatesG1, . . . ,Gn. EachGi is also associated with a costci
(in our setting, the cost is the latency) and a probabilitypi of
being true4 The order of predicate evaluation generated by
CARLOG is a permutation ofG, such that there exists no oth-
er permutation ofG with a lower expected acquisition cost.

For Figure 3, the expected costE of evaluating the predi-
cates in the orderG1,G2,G3 can be defined recursively as:

E[G1,G2,G3] = p1∗E[G2,G3|G1 = 1]

+(1− p1)∗E[G2,G3|G1 = 0]+C1
(1)

Because evaluation can be short-circuited whenG1 is false,
this results in the following expression:

E[G1,G2,G3] = p1∗E[G2,G3]+C1 (2)

This expected cost calculation can be applied to any size
set of predicates. Using a brute force approach, one can find

3In CARLOG, leaves can represent EDB-predicates which are not sensors
or cloud predicates. We omit further discussion of this generalization as it
is straightforward.

4pi andci may be better modeled using a distribution rather than a single
average value, as in this paper. We have left an exploration of this exten-
sion to future work. However, as we have discussed before, our choices for
pi andci generally do not affect correctness of predicate evaluation, only
latency.



the expected cost for each permutation of a setG and iden-
tify the permutation with the lowest cost. In the following
sections, we explore algorithms for determining the optimal
evaluation order for: (a) conjunctive rules without negation,
(b) conjunctive rules with negation, and (c) concurrent con-
junctive rules with no negation and shared predicates. Ex-
ploring optimizations for concurrent conjunctive rules with
negation and shared predicates is left to future work.

4.3 Latency Optimization: Algorithms
Single Conjunctive Query without Negation. Consider a
single conjunctive query withn leaf sensor and cloud pred-
icates and where none of the predicates are negated. Intu-
itively, the lowest expected cost evaluation order prioritizes
predicates with a low cost (latency) and low probability of
being true. For conjunctive queries without negation, this
intuition enablesCARLOG to use an optimal greedy algorith-
m with O(n log n) complexity [25] to compute an ordering
with the minimal expected cost.
THEOREM 4.1. Specifically, if

c1

1− p1
≤

c2

1− p2
≤ . . .≤

cn

1− pn
(3)

then G1,G2, . . . ,Gn is the predicate evaluation order with
lowest expected cost.

Single Query with Negation. The basic form of Data-
log provides only conjunctive (AND) queries. Fundamen-
tally, negation cannot be expressed using conjunction alone.
For this reason, many Datalog systems incorporate support
for negated rules and negated IDB-predicates. In the au-
tomotive domain, we have found many event description-
s to be more naturally expressed using negation. Consid-
er a predicateRightTurnSignal in CARLOG that deter-
mines whether the right turn indicator is on. The predicate
(NOT RightTurnSignal) is useful to express some rules
(§5) but cannot be expressed in a purely conjunctive ver-
sion of Datalog, since the negation is theOR of two cases
(LeftTurnSignal ORNoSignal).

A simple example of a proof tree for a query with negation
is shown in Figure 4. In this example, the IDB-predicateR1
is negated. Short-circuiting evaluation for negated predicates
is different than in the purely conjunctive case. For example,
in Figure 4, we can only short-circuit the evaluation of the
query when bothG2 andG3 are true, but if one is false, we
must continue the evaluation.

In this paper, we develop an algorithm for queries with
negation that relies on an exchange argument, which we il-
lustrate using Figure 4(a). Suppose that the optimal order
of evaluation ofR1 is (G2,G3). Then in the optimal or-
der of evaluation for the overall query,RH, G1 cannot be
interleaved betweenG2 andG3. Assume the contrary and
consider the following order of evaluation:(G2,G1,G3).
For this ordering, it can be shown that the expected cost
is c2 + c1 + p1p2c3: G2 must be evaluated, and regardless
of whetherG2 is true or false,G1 must be evaluated;G3
is only evaluated ifG2 andG3 are both true. By a similar
reasoning, it can be shown that the cost of(G1,G2,G3) is
c1 + p1c2+ p1p2c3. Comparing term-wise, the cost of this
order is less than or equal to(G2,G1,G3).

Now consider the other possible ordering(G2,G3,G1).
In this case, the expected cost isc2 + p2c3 +(1− p2p3)c1.
Consider predicateR1 of Figure 4(a) in isolation. This pred-
icate has aneffective costof c2 + p2c3 (for similar reasons
as above) and aneffective probabilityof (1− p2p3) (since
R1 is negated, it is true only when bothG2 andG3 are not
simultaneously true). By Theorem 4.1,CARLOG produces
an optimal order of(R1,G1) only if c2+p2c3

1−(1−p2p3)
≤ c1

1−p1
. Af-

ter simplifying the expression on the LHS, this order implies
that c3

p3
≤ c1

1−p1
. Therefore, the cost of(G2,G3,G1) is less

than or equal to the cost of(G2,G1,G3) only if c3
p3

≤ c1
1−p1

.
Therefore, an evaluation order in whichG1 is interleaved be-
tweenG2 andG3 is equal or greater in cost than other orders
where it is not.

Algorithm 1 : OPTIMAL EVALUATION ORDER FOR
QUERIES WITH NEGATION

INPUT : Proof treeT,
1: FUNCTION : OPTORDER(T)
2: N S = set of minimal negated sub-trees inT
3: for all t ∈ N S do
4: Compute optimal evaluation order fort using Theorem 4.1
5: ce f f(t) = expected cost of optimal evaluation order fort
6: pe f f(t)= 1−∏k

i=1 pi , wherepis are the probabilities associated with
the leaf predicate oft

7: Replacet with a single node (predicate) whose cost isce f f(t) and
whose probability ispe f f(t)

8: N S = set of minimal negated sub-trees inT
9: Compute optimal evaluation order forT using Theorem 4.1

This discussion motivates the use of an algorithm (Al-
gorithm (1)) that independently processes subtrees of the
proof tree using the algorithm for Theorem 4.1 as a building
block. This algorithm operates onminimal negated-subtrees,
which are subtrees of the proof tree whose root is a negated-
predicate, but whose subtree does not contain a negated pred-
icate. Intuitively, Algorithm (1) computes the effective cost
and effective probability for each minimal negated-subtree
and replaces the subtree with a single node (or predicate) to
which the effective cost and probability are associated. At
the end of this process, no negated subtrees exist, and Theo-
rem 4.1 can be directly applied.

For conjunctive queries, there is a single evaluation order.
Because of more complex short-circuit evaluation rules, this
is not always the case for queries with negated predicates.
The output of our algorithm for negation is actually a bina-
ry decision treethat defines the ordering in which predicates
should be evaluated. For example, in Figure 4(a), if the e-
valuation order is(G2,G3,G1), the decision tree is as shown
in Figure 4(b). In this tree, ifG2 is false, thenG1 must be
evaluated.G1 is also evaluated ifG2 is true, butG3 is false.

We have proved (see Appendix A) Algorithm (1) to be
optimal among alllinear strategies: in these strategies, the
order of predicate evaluation is fixed, but the evaluation of
some predicates might be skipped if unnecessary. There is a
class of strategies, calledadaptivestrategies, which can have
lower expected cost, where the order of evaluation depend-
s on the values of already-evaluated predicates. In gener-
al, adaptive strategies perform better, but finding an optimal
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Figure 4—Example of a Negation Proof Tree and its Decision Tree

adaptive strategy for the negation case is known to be NP-
hard [25].
Multiple Queries without Negation. In CARLOG, multiple
automotive apps can concurrently instantiate queries. These
queries can also share predicates. Consider two queries, one
which uses predicatesX andY, and another which usesY and
Z; i.e., they share a predicateY. Now, suppose the probabil-
ities of X, Y andZ are 0.39, 0.14 and 0.71 respectively, and
their costs are 201, 404, and 278. Jointly optimizing these
queries (by realizing that evaluatingY first can short-circuit
the evaluation ofbothqueries) results in an order(Y,X,Z),
which has an expected cost of 471.1. Alternative approaches
like individually optimizing these queries using Theorem 4.1
and evaluating the shared predicate only once, or using The-
orem 4.1 but assigning half the cost ofY to each query, incur
higher costs (643.9 and 521.6 respectively).

This multi-query optimization, unfortunately, is NP-
complete: we have proved this by reduction from Set Cover
(see Appendix B). (We do not know of prior work that has
posed this multi-query optimization, or examined its com-
plexity). We have designed a greedy adaptive heuristic for
this strategy that is loosely modeled after aΘ(logn) approx-
imation algorithm for set-cover [19]. We have yet to prove
approximation bounds for our heuristic.

Intuitively, this heuristic works as follows. LetPi be a
predicate that has not yet been evaluated, whose probabil-
ity is pi and costci . Let Pi occur in Ni rules (or proof
trees) that have not yet been resolved. Then,Ni(1−pi)

ci
rep-

resents the benefit-to-cost ratio of evaluatingPi. Our greedy
heuristic, at each step, picks thatPi , amongst all un-evaluated
predicates, which has the highest benefit-to-cost ratio. This
greedy heuristic has a cost ofO(n2), wheren is the number
of predicates. As we show later, multi-query optimization
can provide significant latency gains in practice.

4.4 Parallel Acquisition
Naive Datalog fact assessment evaluates predicates se-

quentially. The latency of cloud predicate acquisition can
be reduced by issuing requests in parallel. In this case, when
acquiring predicatesG1 andG2, the resulting latency is the
larger of the two individual latencies.

However, parallel acquisition is not always better than
short-circuit acquisition (the converse is also true). Acquir-

ing X andY in parallel is beneficialonly if the minimal ex-
pected cost of acquiring both of them islarger thanthe cost
of acquiring them in parallel5.

CARLOG uses this observation to further optimize predi-
cate acquisition latency. Considern predicates and, without
loss of generality, assume an evaluation orderG1,G2, ...,Gn.
Suppose thatG1,G2, ...,Gi has already been evaluated and
all of those predicates are true. Then, consider theminimal
residual expected costof evaluating the remaining predicates
(j {Gi+1, ...,Gn}, this can be computed using the algorithms
described above). If this residual cost is greater than the la-
tency cost of evaluating those predicates in parallel,CARLOG
reduces latency by acquiring the remaining predicates in par-
allel.
4.5 Putting it All Together

When an app instantiates anCARLOG query, theQuery
Optimizerstatically analyzes the query and assigns proba-
bilities to each sensor or cloud predicate, as discussed above.
The Query optimizer maintains average latencies for acquir-
ing cloud predicates, from offline measurement or gathered
as part of the training process discussed earlier.

Using these costs and probabilities, the Query Optimiz-
er applies the appropriate form of latency optimization dis-
cussed above. This is aone-time computationperformed
when the query is instantiated. The output of this optimiza-
tion is a decision tree (e.g., Figure 4(b)) that is passed to
the Query Plan Evaluator, which repeatedly evaluates queries
when new sensor facts are materialized.

We have left other potentialCARLOG enhancements to fu-
ture work. For example, one approach to further reducing
latency is to use recently-derived facts to short-circuit fact
establishment. We know that if a driver is on the highway
and no obvious deceleration or large turn occurs, then driv-
er is still on the highway. This can be expressed easily in
Datalog, but requires support for recursion, which Datalog
supports but for which we have not designed optimization
algorithms. As another enhancement,CARLOG can also up-
date its predicate probabilities continuously to track changes
in driving habits.

5 Evaluation
In this section, we present evaluation results for several

event-driven automotive apps inCARLOG.
5.1 Methodology and Metrics
CARLOG Implementation. Our implementation ofCAR-
LOG has two components: one on the mobile device and
the other on the cloud. The mobile device implementation
pre-defines sensor and cloud predicates, and some common
aggregation functions (count, min, max and avg). Rules can
be expressed by these predicates with aggregation function-
s, or in terms of other rules. TheCARLOG API provides
functions for installing and removing rules, and installing
and removing queries. Query responses are returned through
inter-process messaging mechanisms. The mobile device
implementation includes the query optimization algorithm-
s described in §4 and code for acquiring local sensors from

5We do not assume thatX andY are independent. They may be correlat-
ed. But, in general, both cloud predicates would need to be retrieved, since
a rule can use different thresholds for each predicate.



the CAN bus over Bluetooth. Our query evaluation engine
is a modified version of a publicly available Java-based Dat-
alog evaluation engine called IRIS [9]. Our modifications
implement the Query Plan Evaluator, which executes the de-
cision tree returned by the Query Optimizer. The local sensor
acquisition code is 14,084 lines of code, and the query pro-
cessing code, including optimization and plan evaluation,is
6,639 lines.

The cloud sensor acquisition component ofCARLOG ac-
cesses a cloud service front-end we implemented. This front-
end supports access to a variety of cloud IDB-predicates: the
curvature of the road, whether it’s a highway or not, the cur-
rent weather information, list of traffic incidents near thecur-
rent location, the speed limit on the current road, whether
the vehicle is close to an intersection or not, the current real-
time average traffic speed, and a list of nearby landmark-
s including gas stations (and associated gas prices). Our
cloud front-end aggregates information from several oth-
er cloud services; map information is provided with Open
Street Map (OSM [26]), weather information from Yahoo
Weather Feed [22], gas prices from MyGasFeed [22], traffic
information from Bing Traffic [8], place-of-interest and cur-
rent traffic speed information from Google [24]. The cloud
front-end is about 700 lines of PHP code.

Methodology and Datasets.To demonstrate some of the
features ofCARLOG, we illustrate results from an actual in-
vehicle experiment. However, in order to be able to accurate-
ly compareCARLOG’s optimization algorithms against other
alternatives, we use trace analysis. For this analysis, we col-
lected 40 CAN sensors (sampled at the nominal frequency,
which can be up to 100Hz for some sensors), together with
all the cloud information discussed above retrieved continu-
ously, from 10 drivers over 3 months. When collecting these
readings, we also record the latency of accessing the sensors
and cloud information. Our dataset has nearly 2GB of sensor
readings, obtained by driving nearly 2,000 miles in different
areas. We use this dataset to evaluateCARLOG as described
below.

Event Definitions. To evaluateCARLOG, we created differ-
ent Datalog rules that cover different driving related events.
Some rules are inspired by existing market apps such as
RateMyDriving [42], others by academic research [28, 30],
while the rest were derived from our collective driving ex-
perience. These include (Figure 6): a sudden sharp turn
(Sharpturn); speeding in bad weather (SpeedingWeather);
a sharp turn in bad weather (SharpTurnWeather); a
left turn executed with the right turn indicator on
(BadRTurnSignal) and vice versa (BadLTurnSignal) and
sharp turn variants of these (BadRSharpTurnSignal and
BadLSharpTurnSignal); finding the cheapest gas station
within driving range (GasStationOp); a slow left turn
(SlowLTurn); tail-gating while driving (Tailgater); several
events defined for highway driving at speed (HwySpeeding),
or having the wrong turn indicator on the highway
(HwyBadRTurnSignal and HwyBadLTurnSignal), or exe-
cuting a sharp turn on the highway (HwySwerving); a le-
gal turn at an intersection at high speed (FastTurn); driv-
ing slowly on a rough road surface (SlowRoughRoad), turn-

Figure 5—Events detected byCARLOG and byNaive

ing on such a surface (RoughRoadTurn), or driving on
the rough road during bad weather (RoughRoadWeather);
speeding or sudden hardbrake while passing the traffic light
(TrafficSignSpeeding andTrafficSignHardBrake); fi-
nally, executing a turn without activating the turn signal
(CarelessTurn).

Many of these event descriptions are, by design, lay-
ered. For example, theSharpTurnWeather event uses the
SharpTurn rule (Figure 6). As discussed before, we expect
that programmers will naturally layer event descriptions,be-
cause this is a useful form of code reuse. Layering permits
sharing of predicates and allows us to also evaluate multi-
query execution and to quantify the benefits of joint opti-
mization of multiple queries. On average each rule uses 3.6
sensor predicates and 2.3 cloud predicates (cloud predicates
are shown in bold in Figure 6). The largest and smallest num-
bers of sensor predicates in a rule are 7 and 2, respectively,
and of cloud predicates 4 and 0. Finally, six of these rules
use negation. A good example of the use of negation is the
definition of theBadRTurnSignal predicate; we have earlier
(§4) motivated the need for negation using this rule.
Comparison for Trace-Driven Evaluation. Our evalua-
tions use 10% of the dataset to compute the predicate prob-
abilities for the 21 rules, and use the remaining 90% of the
data set to evaluate the optimization algorithms. Our evalua-
tion comparesCARLOG’s latency optimization against sever-
al alternatives. ANaiveapproach always acquires all cloud
predicates in parallel during query execution; this represents
a simple optimization beyond what a standard Datalog en-
gine would do. A slightly cleverer strategy,Cloud-Parallel,
acquires cloud predicates in parallel only when all sensor
predicates evaluate to true. This strategy could be achieved
by a programmer re-ordering predicates in rules so that lo-
cal sensors appear first in rule descriptions (§1)6 Two other
approaches consider 2 different predicate acquisition order-
s, and employ short-circuited evaluation:Lowest Prob first
andLowest Cost first. In the Lowest Prob first, predicates
are evaluated in order of increasing predicate probability(as
learnt from traces), while with lowest cost predicates are e-
valuated in order of increasing predicate cost.

Our final two alternatives require some explanation.
Some of the information made available by our cloud service

6A variant ofCloud-Parallelcan short-circuit computation as predicates
are fetched. This is latency-optimal but would send many more cloud re-
quests than necessary. Especially for cloud services that charge per request
or by data volume, this might be an undesirable alternative.



Rule Name Rule Definition

Sharpturn
SteerWheelAngle(?angle),  ABS(?angle) > 30, YawRate(?yaw), GREATER(ABS(?yaw), 15), Intersection(?intersect), NOT(?intersect),  Curvature(?curv),  LESS(ABS(?curv), 30), LatAcc(?latacc), 

GREATER(ABS(?latacc), 2)

SpeedingWeather Weather(?weather), NOT(GoodWeather(?weather)), SpeedLimit(?limit),VehicleSpeed(?speed), LESS(MULTIPLIER(?limit, 1.2), ?speed) , GREATER(?speed, 35)

SharpTurnWeather Weather(?weather), NOT(GoodWeather(?weather)), SharpTurn(?angle, ?yaw,?latacc, ?intersect, ?curv)

LeftSignalOn LeftSignal(?signal), COUNT(?signal) > 1

RightSignalOn RightSignal(?signal), COUNT(?signal) > 1

GoodLTurn LeftSignalOn(?signal), SteerWheelAngle(?angle),  ?angle < -15

GoodRTurn RightSignalOn(?singal), SteerWheelAngle(?angle),  ?angle > 15

BadRTurnSignal NOT GoodRTurn(?signal, ?angle), RightSignalOn(?signal)

BadLTurnSignal NOT GoodLTurn(?signal, ?angle), LeftSignalOn(?signal)

GasStationOp GasStation(?distance), GasPrice(?price, ?avgprice), FuelRate(?fuelrate), FuelLEFT(?fuelleft), ?price < ?avgprice, DIVIDE(?fuelleft, ?fuelrate)> ?distance

BadRSharpTurnSignal Sharpturn(?angle, ?yaw,?latacc, ?intersect, ?curv), BadRTurnSignal(?angle,?single )

BadLSharpTurnSignal Sharpturn(?angle, ?yaw,?latacc, ?intersect, ?curv), BadLTurnSignal(?angle,?single )

SlowLTurn Curavture(?curvature),  LESS(ABS(?curvature), 30), VehicleSpeed(?speed), CurrentSpeed(?curSpeed), ?speed < ?curSpeed, Intersection(?intersect), ?intersect = True,  LeftSignalON(?signal)

Tailgater HwySpeeding(?throttle, ?engine, ?hwy, ?limit, ?speed, ?trac), TrafficIncident(?traffic),TrafficOnWay(?traffic)

HwySpeeding
Throttle(?throttle), ?throttle > 20,   EngineSpeed(?engine), ?engine > 180, Highway(?hwy), ?hwy = True, SpeedLimit(?limit), VehicleSpeed(?speed), LESS(MULTIPLIER(?limit, 1.2), ?speed)  Traction(?trac), 

?trac= True

HwyBadRTurnSignal HwySwerving(?angle, ?engine, ?hwy, ?limit, ?speed), BadLTurnSignal(?angle,?single ), TrafficIncident(?traffic),TrafficOnWay(?traffic)

HwyBadLTurnSignal HwySwerving(?angle, ?engine, ?hwy, ?limit, ?speed), BadLTurnSignal(?angle,?single ), TrafficIncident(?traffic),TrafficOnWay(?traffic)

HwySwerving SteerAngle(?angle), ABS(?angle) > 30,  EngineSpeed(?engine), ?engine > 180, Highway(?hwy), ?hwy = True, SpeedLimit(?limit), VehicleSpeed(?speed), LESS(MULTIPLIER(?limit, 1.2), ?speed)

FastTurn
SteerAngle(?steer), ABS(?steer) > 90,  EngineSpeed(?engine), ?engine > 180, LatAcc(?latacc), GREATER(ABS(?latacc), 2), Intersection(?intersect), ?intersect = True, VehicleSpeed(?speed), ?speed > 15, 

SpeedLimit(?limit), CurrentSpeed(?curSpeed), GREATER(MULTIPLIER(?curSpeed, 0.4), ?limit)

SlowRoughRoad
RoughRoadMagnitude(?rrm), ?rrm > 180,  Traction(?trac), ?trac = True, Brake(?brake), ?brake = True, SteerAngle(?steer), ABS(?steer) > 30,  VehicleSpeed(?speed), ?speed < 20,  SpeedLimit(?limit), 

CurrentSpeed(?curSpeed), GREATER(MULTIPLIER(?curSpeed, 0.4), ?limit)

RoughRoadTurn RoughRoadMagnitude(?rrm), ?rrm > 180,  Traction(?trac), ?trac = True, Brake(?brake), ?brake = True, Intersection(?intersect), NOT(?intersect),  

RoughRoadWeather RoughRoadMagnitude(?rrm), ?rrm > 180, Traction(?trac), ?trac = True, Brake(?brake), ?brake = True, Weather(?x), NOT(GoodWeather(?x)), Intersection(?intersect), NOT(?intersect),  

CarelessTurn SteerAngle(?steer), ABS(?steer) > 90, Intersection(?intersect), ?intersect = True, LatAcc(?latacc), GREATER(ABS(?latacc), 2), NOT(RightSignalON(?right)), NOT(LeftSignalON(?left))

TrafficSignSpeeding
Intersection(?intersect), ?intersect = True, TrafficSignal(?signal), Close(?signal), LonAcc(?lonacc), ?lonacc > 2,  Throttle(?throttle), ?throttle > 20,  EngineSpeed(?engine), ?engine > 180, 

SpeedLimit(?limit), CurrentSpeed(?curSpeed), GREATER(MULTIPLIER(?curSpeed, 0.4), ?limit)

TrafficSignHardBrake
Intersection(?intersect), ?intersect = True, TrafficSignal(?signal), Close(?signal), LonAcc(?lonacc), ?lonacc < -2,  HardBrake(?brake), ?brake = True, SpeedLimit(?limit), CurrentSpeed(?curSpeed), 

GREATER(MULTIPLIER(?curSpeed, 0.4), ?limit)

HeavyDuty Slope(?slope), ?slope > 0.8,  Intersection(?intersect), ?intersect = True,Throttle(?throttle), ?throttle > 20, EngineSpeed(?engine), ?engine > 180, VehicleSpeed(?speed), ?speed < 20

Figure 6—Rules uses in our evaluations

is relatively static (e.g., the road map, locations of intersec-
tions etc.), but some information varies with time (e.g., gas
prices, current traffic levels, traffic incidents etc.). We con-
servatively assume that the static information such as map-
s cannot be completely downloaded onto to the phone, not
for storage reasons, but because maps are expensive, and it
is not clear that developers can afford the up-front costs of
getting multi-user licenses for these maps. We believe it is
more likely that mapping companies will offer pay-as-you-
go services where users can access maps online, and pay for
the information they access. However, mobile devices may
be able tocacherelatively static information and ourNaive-
Cachedstrategy first checks the local cache for cloud pred-
icates and acquires in parallel the uncached ones. Finally,
Cloud-Parallel Cachedapplies caching toCloud-Parallel.

Metrics. We use two metrics for comparison: thelatency
ratio is the ratio of the average query response latency of
one of our alternative schemes to that ofCARLOG, and the
event ratiois the ratio of the number of events detected by
CARLOG, to that detected by one of the alternatives.

5.2 CARLOG in Action
Before discussing our trace-based evaluation, we demon-

strate the benefits ofCARLOG’s latency optimizations us-
ing results from an actual run ofCARLOG during a 40-
minute drive (Figure 5). During this drive, an An-
droid smartphone was configured withCARLOG and e-
valuated 6 queriesconcurrently (TrafficSignSpeeding,
CarelessTurn, HwySpeeding, TrafficSignHardBrake,
Sharpturn, SlowRoughRoad); these rules collectively in-
voked 16 sensor predicates and 7 cloud predicates. We ap-
plied our scheme with multi-query optimization, since all 6
rules shared at least one predicate with another rule. Each
query was evaluated whenever one of its sensor predicates
changed. After one evaluation completed, the next com-

menced when a sensor predicate changed; thus, queries were
continuously evaluated.

In this experiment, we compareCARLOG with theNaive
strategy. During this run, we found thatNaivehad an aver-
age query response time of 899.24ms, butCARLOG’s aver-
age query response time was only 9ms (or almost 2 orders of
magnitude smaller). Moreover,CARLOG detected 4× more
events thanNaive: becauseNaive incurs worst-case latency
for each evaluation, it misses many events. Figure 5 shows
the screenshot of one of our apps that tracks these events on a
map in real-time. The map shows the locations at which the
various events were triggered; the dark marker shows events
detected byCARLOG, and the white marker byNaive. At
many locations,Naivedetects at least one event whereCAR-
LOG detects several. However, there are at least 3 locations
whereCARLOG detects an event, butNaiveis unable to.

This experiment is adversarial along many dimensions: it
demonstrates a number of concurrent rules, uses many local
and cloud sensors, and has a large number of events (nearly
1 per minute). Even under this setting,CARLOG’s benefits
are evident. We now exploreCARLOG’s performance for a
wide range of queries and compare it with other candidate
approaches.
5.3 Single Query Performance

We compare the performance ofCARLOG against the oth-
er candidate strategies discussed above for each query indi-
vidually; that is, in these experiments, we assume that onlya
single query is active at any given point in time. We cannot
conduct such comparisons using live experiments on the ve-
hicle, since during each run of the vehicle we can only evalu-
ate a single strategy and different runs may produce different
conditions. Instead, we used trace analysis to evaluate our
queries for the 7 different strategies described above.

Figure 7 plots the relationship between latency ratio and
event ratio, for 6 of our queries (in what follows, we use



Figure 7—Performance of single queries with 3 cloud sensors

Rule Name SharpTurnWeather SlowLTurn Tailgater HwyBadRTurnSignal HwyBadRTurnSignal FastTurn

Latency(ms) 23.3 23.6 17.44 16.31 18.36 8.18

Events 2462 962 1572 1480 1432 1860

Figure 8—CARLOG Latency and Event counts

queries and rules interchangeably, since in Datalog, a query
seeks to establish whether a given rule is true). In this subset,
all the rules acquire 3 distinct (but different sets of) cloud
predicates. To calibrate these figures, the absolute latency
and the number of events detected byCARLOG are shown
in Figure 8; using these numbers together with the ratios in
Figure 7, one can obtain absolute values for the latency and
events for each strategy.

We first note that none of the alternative strategies domi-
nateCARLOG for any of the queries (i.e., none of the points
in the figure is in the box defined byx = 1 andy = 1). Put
differently, CARLOG is strictly better than any other candi-
date schemeboth in terms of latency and in detected events.
For some queries, likeFastTurn, Lowest Prob Firstdetects
more events thanCARLOG, but incurs more than twice the la-
tency on average. The reason for this is interesting: very of-
ten,Lowest Prob Firstis faster thanCARLOG because it can
short-circuit evaluation quicker, so it detects more events.
However, when it cannot short-circuit, it may end up ac-
quiring a more expensive predicate which takes longer to
acquire. During these times, it can miss events, but on bal-
ance detects more events. For other queries, likeSlowLTurn
andSharpTurnWeather, theCloud-Parallelalternatives are
faster on average because these queries acquire cloud pred-
icates less frequently (this acquisition is short-circuited by
sensor predicates) thanCARLOG, but when they do the in-
curred latency which causes them to miss events, resulting
in event ratios of between 1.2 and 1.5.

The performance of each strategy varies by the query.
This is most evident forNaive, where different rules expe-
rience a wide range of latency ratios (between 40 and 160)
and event ratios (2 to over 4). The same observation holds
for other strategies as well, albeit to a less degree. Although

all queries in the set acquire 3 distinct cloud predicates, the
frequency with which these predicates are evaluated varies
widely across rules, resulting in the observed variability.

Simply adding parallelism to cloud predicate acquisition
doesn’t provide any benefits; witness the pessimal perfor-
mance ofNaive(there is a discontinuity in the y-axis of Fig-
ure 7 because ofNaive’s poor performance). Its 2 orders of
magnitude worse performance is consistent with our experi-
mental results described in the previous subsection. Combin-
ing short-circuiting with parallel cloud acquisition (Cloud-
Parallel) helps significantly; as discussed above, this scheme
is sometimes faster thanCARLOG. However, its benefits are
uneven: forFastTurn, this approach incurs 3× worse laten-
cy on average because in this case cloud sensors are acquired
more often thanCARLOG even though their probability of
being true may be small.

Caching relatively static cloud predicates improves the
performance ofNaiveandCloud-Parallel, but not by much.
There are two reasons for this. Many rules involve cloud
predicates accessing dynamic information (current speed,
gas prices, weather etc.) that cannot be cached. Moreover,
since every cloud predicate is calculated with respect to the
car’s current position, a cached value is associated with a
given GPS reading. Because GPS is sampled discretely and
can have errors, a cached value is useful only if the cloud
predicate is evaluate at exactly the same GPS location, the
probability of which is not high. In our experiments, we used
“fuzzy” matching of GPS locations: if there is a cached read-
ing from within a radiusr of the current location, the cached
reading is used, instead of acquiring the cloud predicate. The
choice ofr is a function of the type of cloud predicate: for
instance, road curvature can vary beyond 10m. In our exper-
iments, we usedr values from 10m to 1 mile: even so, even
so, caching is ineffective.

Paradoxically,Lowest Cost Firsthas consistently high-
er latency cost thanLowest Prob first, but their event ratios
are comparable. Both of these approaches evaluate cloud-
predicates sequentially with short-circuiting. In general, the



Figure 9—Single query performance grouped by number of cloud sensors

Combination 4 Rules 8 Rules 12 Rules 16 Rules 20 Rules

Latency(ms) 32.0 34.3 39.4 45.4 49.2

Events 5332 16768 22300 33836 55898

Figure 10—OPT Latency and Event Counts for multiple queries

costs for cloud sensors are within a small factor of each oth-
er, and the lowest-cost cloud predicate is unlikely to have the
lowest probability. So,Lowest Prob Firstdoes better by ac-
cessing the least likely predicate, whose cost, even if higher,
reduces the need to access additional cloud predicates most
of the time.

Finally, Figure 9 depicts the performance of queries
grouped by the number of cloud predicates they contain.
That is, for a given strategy (sayNaive), we average all
queries withn sensors for eachn = 1. . .4, and repeat this
procedure across all strategies. This figure re-emphasizes
the observation that no strategy dominatesCARLOG (ex-
cept Cloud1 forCloud-Parallel Cache, which is caused by
the fact that all Cloud1 rules are defined with a cacheable
cloud sensor, the cache will reduce the latency compared to
any cloud fetching strategy.). However, whileNaiveand it-
s cached version are pathologically bad, most of the other
schemes incur less than 50% additional latency, butCAR-
LOG detects up to 30% more events than these, as shown in
the inset in Figure 9. While it may seem that some of these
alternatives may be competitive, we shall see in the next sec-
tion that their performance can be worse in realistic settings
with multiple queries. Furthermore, 30% fewer events corre-
sponds to missing 500-600 events in some cases, a substan-
tial penalty.

There does not seem to be any monotonicity in perfor-
mance with respect to the number of cloud predicates: for
example,Naivehas a higher latency ratio with 1 cloud sensor
than with 4. This is because the probability with which cloud
predicates are accessed more strongly dictates performance
than the number of cloud predicates. Interestingly,Lowest
Cost first, Lowest Prob first, and theCloud-Parallelvariants
perform the same asCARLOG for rules with a single-cloud

predicate. In all of these cases, short-circuiting is employed
and the single cloud predicate is invoked at the same time by
all three schemes.

5.4 Multiple Query Performance
In realistic settings, multiple apps may issue concurrent

CARLOG queries. In §4, we argued that jointly optimizing
across multiple queries can provide a lower overall cost. In
this subsection, we explore various aspects ofCARLOG per-
formance with concurrent queries: the importance of multi-
query optimization, the performance hit due to our heuristic,
and how performance scales with increasing number of rules.

Figure 11 depicts this performance where all results are
normalized with respect to a strategy calledOPT, for differ-
ent numbers of concurrent queries. This strategy uses dy-
namic programming to compute the optimal query execution
order for multiple queries, whileCARLOG uses the greedy
heuristic proposed in §4. Also,Single OPTuses single-query
optimization separately, instead of jointly optimizing across
queries. As before, to obtain absolute ratios and event detec-
tions, Figure 10 depicts the absolute latencies and events for
OPT.

We first note thatCARLOG is the closest toOPT amongst
all schemes. Because it is a heuristic,CARLOG’s multiquery
optimization generally has a latency ratio that is off the opti-
mal by about 20-50% depending on the number of rules. It is
unclear if query concurrency in mobile apps will exceed 20,
so a latency penalty of at most 50% may be what our heuris-
tic sees in practice. Interestingly, this comes at no change
in the event ratio, becauseOPT latencies are small enough
to begin with, the small increases do not perceptibly affect
event detections.

Next,CARLOG’s multi-query optimization is essential for
performance.Single OPT, which optimizes each query in-
dependently, detects half as many events or less and incurs
up to 3× more latency. In our rule base, each rule shares at
least one predicate with at least one other rule, and our multi-
query optimization clearly short-circuits evaluation much
more effectively thanSingle OPT.



Other candidate strategies perform worse thanCARLOG.
Cloud-Parallelhas good latency performance compared to
OPTandCARLOG, but can miss a third or more events. Both
Lowest Cost firstandLowest Prob firsthave latency ratios
above 1.5 and event ratios nearing 2. These event ratios sug-
gest that these approaches are unacceptable.

Interestingly, unlike for the single-query case,Lowest-
cost first performs better thanLowest Prob firstin terms
of the event ratio, though the two have comparable average
latency ratios. We conjecture that the latter scheme more
often acquires an expensive cloud sensor first before short-
circuiting evaluation, and so is more likely to miss events.

Finally, the latency and event ratios don’t change appre-
ciably with increasing numbers of concurrent queries. For
example,Naive’s latency ratio lies in the 25-30 range, while
Lowest Cost FirstandLowest Prob Firsthave latency ratios
in the 1.5-2 range. This suggests that each scheme degrades
in performance proportionally to the optimal and toCAR-
LOG. Put another way, relative to the other schemes,CAR-
LOG does not scale appreciably worse than other schemes.

6 Related Work
Industry Trends. Developments in industry are progress-
ing to the point where automotive apps will become much
more widespread than they currently are, at which point a
CARLOG-like platform will be indispensable. Several ap-
plications like OBDLink [39] and Torque [46] are popular
in both Android and iOS, and allow the users to view very
limited real time OBD-II scan data (a subset of information
available on the CAN bus). Torque also supports extensibili-
ty through plug-ins that can provide analysis and customized
views. Automotive manufacturers are moving towards pro-
ducing closed automotive analytics systems like OnStar [23]
by General Motors, and Ford Sync [21] by Ford. Currently,
these systems do not provide an open API, but if and when
car manufacturers decide to open up their systems for ap-
p development,CARLOG can be a candidate programming
framework.
Automotive Sensing. Recent research has also explored
complementary problems in the automotive space, such as
sensing driving behavior using vehicle sensors, phone sen-
sors, and specialized cameras [10, 2, 53, 54, 51, 52]. These
algorithms can be modeled as individual predicates inCAR-
LOG, so that higher level predicates can be defined using
these detection algorithms. Prior work has also explored
procedural abstractions for programming vehicles [20], and
focuses on tuning vehicles but does not consider latency op-
timization, unlikeCARLOG. Recent work has examined user
interface issues in the design of automotive apps [35], which
is complementary to our work. Finally, while automotive
systems have long been known to have a large number of
networked sensors, our work is unique in harnessing these
networked sensors and designing a programming framework
for automotive apps that access cloud-based information to-
gether with car sensors.
Datalog query optimization. Datalog optimization [13]
has been studied over decades, many different optimiza-
tion strategies have been proposed and well-studied. There
are mainly 4 classes of optimization methods: top-down,

bottom-up, logic rewriting methods (magic sets), algebraic
rewriting. Bottom-up evaluation [12, 15, 4, 6] was origi-
nally designed to eliminate redundant computation in reach-
ing a fixpoint in Datalog evaluation. Top-Down evalua-
tion [48, 49, 5] is a complementary approach with a sim-
ilar goal of eliminating redundant computation in goal or
query-directed Datalog evaluation. The Magic Sets method
[14, 5, 7], and a related Counting method [5, 7], are rewriting
methods that insert extra IDB-predicates into the program;
these serve as constraints for bottom-up evaluation, thus e-
liminating redundant computations of intermediate predi-
cates. In contrast to all of these, our algorithms optimize
the order of predicate acquisition for sensor and cloud pred-
icates, a problem motivated by our specific setting.

Boolean predicate evaluation.The theory community has
explored optimizing the evaluation order of Boolean predi-
cates. Greineret al. [25] consider the tractability of various
sub-problems in this space, and our work is heavily informed
by theirs. However, they do not consider multi-query opti-
mization. Laber [11] suggests re-ordering conjunctive pred-
icates with no negation based on the properties of the rela-
tional table on which the predicates are evaluated. Another
work by the same author [18] deals with more complicat-
ed queries that include negation, in a similar setting. These
kinds of optimizations are special cases of the evaluation of
game trees [44]. In general, these problems have not ad-
dressed a setting such as ours, where predicates have both
a cost and an associated probability. Closest is the work of
Kempeet al.[34], who prove a result similar to Theorem 4.1,
but in the context of optimizing ad placement on websites.

Declarative Programming. Declarative programming us-
ing Datalog has been proposed in other contexts. Meld [3]
uses Datalog to express the behavior of an ensemble of robot-
s, and partitions the program into code that runs on individual
devices. Snlog [17] uses Datalog for providing a similar ca-
pability in the context of wireless sensor networks. Beyond
differences in the setting (CARLOG is for cloud-enabled mo-
bile applications), these pieces of work do not consider la-
tency optimization.

Partitioning cloud-enabled mobile app computations.A
body of work has explored automatic partitioning of com-
putations across a mobile device and the cloud, either to
conserve energy [45, 16], or to improve throughput and
makespan for video applications [41]. A complementary
body of work has explored crowd-sourcing sensing tasks
from the cloud to the mobile device [43, 40]. Unlike this
body of work,CARLOG focuses on applications that use the
cloud as a source of dynamically-changing information.

Context Sensing.CARLOG is intellectually closest to a line
of work that has considered continuous context monitoring
on mobile devices. In this work, the general idea is to de-
fine, for a given context (e.g., Walking or Running) monitor-
ing task, an efficient execution order that, for example, us-
es the output of cheaper sensors to estimate, or determine
when to trigger, a more expensive sensor. Work in this
area has focused on permitting users to declaratively spec-
ify multiple contexts of interest [32, 50] and then, given op-
timal execution orders for each individual context sensing



Figure 11—Multi-query performance

task, to try to jointly optimize energy usage across multi-
ple contexts. A complementary line of work has explored
CPU resource management and scheduling of these contin-
uous sensing tasks [31, 33]. Unlike this body of work, our
paper explores optimizing latency of access to cloud infor-
mation, leveraging the fact that Datalog’s declarative form
makes it possible to perform these optimizations at run-time
transparent to the developer.

Closest to our work is ACE [38], which explores energy-
efficient continuous context sensing, but focuses, in part,on
devising an optimal execution order for sensors on a mobile
phone. ACE tackles the problem of single query with nega-
tion, and presents an algorithm substantially similar to ours,
but has not considered multi-query optimization. Further-
more, CARLOG focuses on latency of access to cloud sen-
sors, a problem that is slightly different since latency costs
are non-additive (parallel access to sensors does not addi-
tively increase latency).

7 Conclusion
In this paper, we discussCARLOG, a programming sys-

tem for automotive apps.CARLOG allows programmers to
succinctly express fusion of vehicle sensor and cloud infor-
mation, a capability that can be used to detect events in au-
tomotive settings. It contains novel optimization algorithms
designed to minimize the cost of predicate acquisition. Us-
ing experiments on a prototype ofCARLOG, we show that it
can provide significantly lower latency than parallel access
to cloud sensors and also detect 3-4× more results.
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A Optimality of Single Query with Negation
Algorithm (1) relies on a crucial property: that, in any

optimal order, a negated predicate (or, equivalently, a negat-
ed subtree of the proof tree) can be considered as an atomic
predicate with respect to other non-negated predicates. The
proof of thisnegation atomicityrequires two steps. The first
step formalizes the intuitive exchange argument discussed
in §4, but assumes that negated predicates are not nested.
The second step proves negation atomicity for nested negat-
ed predicates as well.
LEMMA 1. Negation Atomicity. Consider a query with K
positive predicates Gp1, . . . ,GpK, and L negative predicates
Gn1, . . . ,GnL. Each positive (negative) predicates can be
viewed as a single query with, if any, Apk (Anl) non-negated
atoms. Any evaluation order interleaving atoms in a negated
predicate Gnx and atoms, if any, in other predicates Gpk or
Gnl at the same level as Gnx would cost more than evaluating
the negated predicate Gnx as a whole.
PROOF. According to previous discussion, the probability
for predicateGpk and negated predicateGnl to be true is,
respectively:

ppk =

Apk

∏
apk=1

papk, pnl = 1−
Anl

∏
anl=1

panl (4)

Since each positive predicate has only non-negated atoms,
without loss of generality, we can treat each and every atom
as a directly evaluable atom set{Gp1, . . . ,GpK′} at the same
level asGnl, whereK′ = ∑K

k=1 Apk.
Assume the evaluation order yields from Algorithm 1 is

{Gm1, . . . ,Gm(K′+L)}, then according to Equation 3, we have

Cm1

1− pm1
≤

Cm2

1− pm2
≤ . . .≤

Cm(K′+L)

1− pm(K′+L)
(5)

Assume thatGmx is a negated predicateGnl, which has
Anl direct evaluable atoms, each with a cost ofCanl and a
probability of panl to be true. Inside the negated predicate,
assume that the optimal evaluation order is{r1, . . . , rAnl},
which would satisfy Equation 3 according to Theorem 4.1
. Hence, the whole evaluation order would be

{(Gm1, . . . ,Gm(x−1), r1, . . . , rAnl,Gm(x+1), . . . ,Gm(K′+L))}
(6)

Assume each predicateGmy has a cost ofCmy and a prob-
ability of pmy to be true. From here, we separate the proof
into two parts, one for interleaving predicatesGmy,y 6= x as a
whole with one negatedGmx, the other for interleaving atom-
s {r1, . . . , rAnl1} and{r1, . . . , rAnl1} of any different negated
predicatesGnl1 andGnl2. We prove that in either case, the
interleaving would cost more than the original optimal order.

Part 1: Consider movingGm(x−1) into the negation part
betweenr i andr i+1. The expected cost of the whole query
before the move is:

Cc+ pc(CN + pN ∗Cres) (7)

where

Cc =Cm1+
x−1

∑
a=2

{

Cma

a−1

∏
b=1

pmb

}

(8)

pc =
x−1

∏
b=1

pmb (9)

CN =C1+
Anl

∑
a=2

{

Ca

a−1

∏
b=1

pb

}

(10)

pN = 1−
Anl

∏
b=1

pb (11)

Cres=Cm(x+1)+
K′+L

∑
a=x+2

{

Cma

K′+L−1

∏
b=x+1

pmb

}

(12)

The expected cost of the whole query after moving
Gm(x−1) to the position betweenr i andr i+1 is:

C∗
c + p∗c

{

CN1+ pN1
[

Cm(x−1)+ pm(x−1)(CN2+ pN2Cres)
]}

(13)
where

C∗
c =Cm1+

x−2

∑
a=2

{

Cma

a−1

∏
b=1

pmb

}

(14)

p∗c =
x−2

∏
b=1

pmb (15)

CN1 =C1+C′
N1+(1− pi)C

∗
res

i−1

∏
b=1

pb (16)

C′
N1 =

{

i

∑
a=2

[

Ca

a−1

∏
b=1

pb+(1− pa−1)C
∗
res

a−2

∏
b=1

pb

]}

(17)

pN1 =
i

∏
b=1

pb (18)

CN2 =Ci+1+C′
N2+(1− pAnl)Cres

Anl−1

∏
b=i+1

pb (19)

C′
N2 =

{

Anl

∑
a=i+2

[

Ca

a−1

∏
b=i+1

pb+(1− pa−1)Cres

a−2

∏
b=i+1

pb

]}

(20)

pN2 =
Anl

∏
b=i+1

pb (21)

C∗
res= (Cm(x−1)+ pm(x−1)Cres) (22)

Note thatC∗
res is different fromCres in that if any atom

r j , j < i fails, instead of skipping all remaining atoms in the



negated predicate and evaluate the rest part of the query s-
tarting fromGm(x+1), the query would now evaluateGm(x−1)
as well due to the interleaving. The key numeric relation
to help see the insight of these complicated equations is the
following:

(1− p1)+

{

Anl+1

∑
a=3

[

(1− pa−1)
a−2

∏
b=1

pb

]}

= 1−
Anl

∏
b=1

pb (23)

Thus in Equation 13, the coefficient ofCm(x−1) is

p∗c

{

(1− p1)+

[

i+1

∑
a=3

(1− pa−1)
a−2

∏
b=1

pb

]

+ pN1

}

= p∗c(1−
i

∏
b=1

pb+ pN1) = p∗c (24)

It can be seen from Equation 7 and 8 that the coefficien-
t of Cm(x−1) before moving is alsop∗c. Thus moving the
Gm(x−1) into the negated rule, doesn’t change the coefficient
of Cm(x−1) in the expected cost of the query.

It is also quite obvious that the coefficient ofCj before

moving ispc∏ j−1
b=1 pb, whereas after interleaving, the coeffi-

cient becomes:

{

p∗c ∏ j−1
b=1 pb, j ≤ i

pc∏ j−1
b=1 pb, j > i

(25)

With the coefficient ofCres being pc∏Anl
b=1 pb = p∗c ∗

pm(x−1) ∏Anl
b=1 pb in both cases, we can conclude that mov-

ing Gm(x−1) to the position betweenr i andr i+1 would bring
an extra expected cost of(1− pm(x−1))∑i

j=1Cj .
With Theorem 4.1, we proved that it would have greater

or equal cost to move anyGmy,y < x−1 or anyGmy,y > x
to the position betweenGm(x−1) and Gmx. Thus, combin-
ing Theorem 4.1 with what we just proved above, we can
conclude that interleaving any predicateGmy,y 6= x with the
negated predicateGmx would have a higher expected cost
than the original optimal evaluation order.

Note that this conclusion equivalently proves that moving
out any atomsr i ,∀i in Gmx to the any position between would
have greater or equal cost. The reason is that the latter move-
ment can be interpreted as the following two steps. Moving
to the position betweenGmz andGm(z+1), z< x, (the other
case is symmetric) is equivalent to first movingryi beforery1
and then move all predicates betweenGmz andGmx into the
negated predicateGmx. Both the first (Theorem 4.1) and sec-
ond step (proved above) are proved of greater or equal cost.

Part 2: By a similar derivation, we can prove that it would
cost more if we interleave atoms of any different negated
predicatesGnl1 andGnl2. To simplify the exposition, we omit
the closed-form expressions and explain the gist of them by
comparing the coefficients directly.

To start with, assumeGnl1 and Gnl2 are two consecu-
tive negated predicates,Gmx andGmy,y = x+1, in the op-
timal order. Gmx (Gmy) has a set of direct evaluable atoms

{rx1, . . . , rxAmx} ({ry1, . . . , ryAmy}). Suppose the optimal eval-
uation order would be:

{rx1, . . . , rxAmx, ry1, . . . , ryAmy} (26)

Consider movingrxAmx to the position betweenryi and
ry(i+1). Before moving, the coefficient ofrxAmx, which is also
the probability to evaluaterxAmx is:

Cp(xAmx) =
x−1

∏
b=1

pmb∗

Am(x−1)

∏
b=1

pb (27)

Whether atomsry j , j ≤ i fail or not, atomrxAmx would still
have to be evaluated, as long asr1, r2, ..., rxAm(x−1)

are true.
Therefore, after moving, the coefficient remainsp(xAmx).

Similar to the analysis inPart 1, the coefficient forCres
will remain the same, while in this case:

Cres=Cc+ pc∗C∗
res (28)

where

Cc =Cy(i+1)+
Amy

∑
a=i+2

{

Ca

Amy−1

∏
b=i+1

pb

}

(29)

pc = 1−
Amy

∏
b=i+1

pb (30)

C∗
res=Cm(y+1)+

K′+L

∑
a=y+2

{

Cma

K′+L−1

∏
b=y+1

pmb

}

(31)

and the coefficient remains

Cpres= p(xAmx) ∗

{

1−
Amx

∏
b=1

pb

}

∗
yi

∏
b=1

pb (32)

The only difference of interleaving lies in the coefficient
of eachry j, j ≤ i. Originally, the coefficient ofry j, j ≤ i is:

Cpy j = p(xAmx) ∗

{

1−
Amx

∏
b=1

pb

}

∗
y( j−1)

∏
b=1

pb (33)

whereas after moving, it changes to the value ofCp
′

y j, be-
cause whether or notrxa,1 ≤ a ≤ Am(x−1) fails, ry j would
still have to be evaluated:

Cp
′

y j = p(xAmx)

y( j−1)

∏
b=1

pb (34)

With 0 ≤ 1−∏Amx
b=1 pb ≤ 1, movingrxAmx to the position

betweenryi andry(i+1) would have greater or equal cost than
original optimal order. According to Theorem 4.1, moving
anyrxi to the position afterrAmx would have greater or equal
cost. Thus we conclude that interleavingrxi,∀i to the any po-
sition betweenryi andry(i+1),∀i would have greater or equal
cost.

By symmetry, we can also prove that movingry1 to the
position betweenrxi andrx(i+1) would have greater or equal



cost than original optimal order. Similarly, according to The-
orem 4.1, moving anyry j to the position beforery1 would
have greater or equal cost. Thus, we conclude that interleav-
ing ry j,∀i to any position betweenrxi and rx(i+1),∀i would
have greater or equal cost.

Since by now we know that interleaving neighboring
negated predicates would have greater or equal cost, consid-
er interleaving any two negated predicates within a query.
The interleaving process can be interpreted as three step-
s. First, move the two predicates to neighboring position-
s, which cannot decrease the cost (Theorem 4.1). Second,
interleave two neighboring negated predicates, which also
cannot decrease the cost, as just proved. Finally, interleave
predicates in between a negated predicate, which cannot de-
crease the cost as proved in Part 1. With Theorem 4.1 and
above two part proof, we conclude that interleaving atoms of
any two negated predicatesGmx Gmy,∀x,y would cost more
or equal than the original optimal order. That concludes Part
2.

Having proved that interleaving any predicates (Part 1),
or any atoms of any negated predicates (Part 2), with atoms
of any negated predicate would incur a higher or equal cost,
we conclude here the proof ofNegation Atomicity

The above proof does not consider nested negation. In
what follows, we prove that negation atomicity applies re-
cursively when negated predicates are nested.
LEMMA 2. Nested Negation Atomicity. In the most gener-
al case, interleaving any atoms of positive or negated predi-
cates, which are positively or negatively nested at any level,
would cost higher or equal to evaluating the negated predi-
cate at each level as a whole.
PROOF. We separate the proof into two parts: one for mov-
ing an atom into any level of negated predicates, and the oth-
er for moving one atom of negated predicate out of any level
of negation.

MoveIN: Consider a negated predicatesGnl has only one
level of nested negated atoms and all positive predicatesGpK
has no negated atoms. As analyzed in the proof of Lemma 1,
without loss of generality, we could still assume there areK′

direct evaluable atoms in all positive predicates. Interleaving
Gpk,1≤ k≤ K′ with any nested negated atomr i ,1≤ i ≤ Bnl
can be interpreted as two exchanges. First, moveGpk into
Gnl among its positive atoms. Second, moveGpk from posi-
tive atoms into negated atoms ofGnl. According to Lemma
1, both of these two steps would cost higher or equal, hence
interleaving a direct evaluable atom into one level, or any
level of consecutivelynested negated predicates would cost
more or equal.

Note that with Theorem 4.1, interleaving atoms into a
positive predicate would cost more or equal as well. There-
fore, by induction, we prove that interleaving a direct evalu-
able atom into any level ofdiscretelynested negated predi-
cates would cost more or equal.

MoveOUT: In Part 1 of Lemma 1, we proved that moving
one direct evaluable atom out of a negated predicate would
cost more or equal. By induction, it would cost higher or
equal to move one direct evaluable atom out of any level of
consecutively(negatively) nested negated predicates.

Consider positive predicatesGpx which haveApk positive

predicates andBpk negated predicates. Each negated pred-
icate has only one direct evaluable atoms. Moving one of
these atomsr i out of apositively nestednegation to be at the
position betweenGpz andGp(z+1) can be interpreted as the
following two steps. Assumingz< x, it is equivalent to mov-
ing all predicates betweenGpz andGpx into the beginning of
Gpx and movingr i to the position beforeGpz. The former
movement (Theorem 4.1) and the latter (Lemma 1), have al-
ready been proved to cost higher or equal. Hence, moving
a direct evaluable atom out of one level ofpositively nested
negation would cost more or equal. Now by induction, we
can prove moving a direct evaluable atom out of any level
of discretelynested negated predicates would cost more or
equal.

Finally, the process of interleaving atoms with any lev-
el of consecutivelyor discretelynested negation can be re-
solved into multipleMoveINand multipleMoveOUT. Final-
ly, with the proof of these two parts,MoveINandMoveOUT,
we draw the conclusion that any evaluation order interleav-
ing atoms in negated predicateGnx and atoms, if any, in oth-
er predicates, positive (Gpk) or negated (Gnl), nested or not,
would cost more than evaluating the negated predicateGnx as
a whole. Note thatGnx could actually be at any level of the
expansion tree. That concludes the proof ofNested Nega-
tion Atomicity , and of the optimality of Algorithm (1).

B Proof of NP-Completeness for Multiple
Queries without Negation

We will reduce PCA optimization of multiple queries
without negation to the Set Cover Problem, which is known
to be NP-Complete. ConsiderN queries,Q1, . . . ,QN, each
Qi hasMi predicatesPi1, . . . ,PiMi , each predicate has cost
and probability associated with it. Note that thoseN queries
may have shared predicates. We consider a simplified spe-
cial case in this scenario. Assume all predicates have same
cost, and the probability of each predicate is close to 0, say
1e−100, which means each predicate is almost false. To as-
sociate with the Set Cover problem, we treat each predicate
as a subset, with elements represented by queries that contain
that predicate. For example, predicatePi appears ink queries
Qi1, . . . ,Qik, and Pi is treated as a subset here, containing
queriesQi1, . . . ,Qik as elements. Note that ifPi is false, all
of these queries will be false. The universe set consists all
queriesQ1, . . . ,QN. Since we assume that each predicate is
close to false and has same cost, the Multi-query Cost Min-
imization Problem becomes finding the least predicates that
determine all queries’ results, which is equivalent to finding
the minimum number of subsets to cover the universe set (Set
Cover Problem).


