CARLOG: A Platform for Flexible and Efficient Automotive Sensing ¥

Yurong Jiand, Hang Qid, Matthew McCartnel, William G.J. Halfond, Fan Baf, Donald Grimnd,
Ramesh Govinddn

TUniversity of Southern California *GM Global Research & Development
{yurongji,hangqiu,mmcartn,halfond,ramesh}@usc.edu {fan.bai,donald.grimm}@gm.com

Abstract 1 Introduction

Automotive apps can improve efficiency, safety, comfort, Many mobile app marketplaces feature automotive app-
and longevity of vehicular use. These apps achieve theirs that provide in-car infotainment, or record trip informa-
goals by continuously monitoring sensors in a vehicle, and tion for later analysis. With the development of systems lik
combining them with information from cloud databases in Mercedes-Benz mbrace [37], Ford Sync [21], and GM On-
order to detect events that are used to trigger actions (e.g.Star [23], it is clear that auto manufacturers see significan
alerting a driver, turning on fog lights, screening call$hw- value in integrating mobile devices into the car’s eleciton
ever, modern vehicles have several hundred sensors that deecosystem as a way of enhancing the automotive experience.
scribe the low level dynamics of vehicular subsystemsghes Because of this development, in the near future we are likely
sensors can be combined in complex ways together withto see many more automotive apps in mobile marketplaces.
cloud information. Moreover, these sensor processing-algo Animportant feature of automobiles that s likely to play a
rithms may incur significant costs in acquiring sensor and significant part in the development of future automotive-app
cloud information. In this paper, we propose a programming s is the availability of a large number of vehicular sensors.
framework calledcARLOG to simplify the task of program- These sensors describe the instantaneous state and perfor-
ming these event detection algorithnthRLOG uses Data- mance of many subsystems inside a vehicle, and represent a
log to express sensor processing algorithms, butincorg®ra rich source of information, both for assessing vehicle beha
novel query optimization methods that can be used to mini- ior and driver behavior. At the same time, there has been
mize bandwidth usage, energy or latency, without sacrdicin an increase on the availability of cloud-based information
correctness of query execution. Experimental results on athat governs the behavior of vehicles: topology and teyrain
prototype show thatARLOG can reduce latency by nearly weather, traffic conditions, speed restricti@ts.
two orders of magnitude relative to an unoptimized Datalog As such, we expect that future automotive apps will likely
engine. combine vehicular sensors with cloud-based information as
Categories and Subject Descriptors well as sensors on the mobile de_vi_ce itself to e_nhance the per

J.7 [Computers in Other Systemd Consumer Products; ~ formance, safety, comfort, or efficiency of vehicles (82)r F
D.2.13 [Boftware Engineerind: Reusable Software; H.3.4 €xample, apps can monitor vehicular sensors, GPS location,
[Information Storage and Retrievall: Systems and Soft- and traffic and weather information to determine whether the
ware car is being driven dangerously, and then take appropriate
General Terms action €.g.,screen calls, alert the driver). Similarly, an app

. . . _ may be able to warn drivers of impending rough road con-
Design, Experimentation, Performance, Algorithms ditions, based both on the availability of cloud-based road

Keywords_) o surface condition maps and an analysis of vehicle comfort
Automotive, Datalog, Latency, Predicate Acquisition settings €.g.,suspension stiffness).
*The first 2 authors, Yurong Jiang, Hang Qiu, were supporterby In this paper, we Con5id?r automotive apps that combine
nenberg Graduate Fellowship. This material is based upek supported sensor and cloud information. Many of these apps can be
by the National Science Foundation under Grant No. CNS-1830 modeled as Continuous|y processing vehicular sensors with

cloud information, in order to deteetvents In the exam-
ples above, a car being driven dangerously, or over a patch
of rough road, constitutes an event, and sensor procedsing a
gorithms continuously evaluate sensor readings to determi
Permission to make digital or hard copies of all or part of thork for personal or when a_n everjt occurs or to gntlupate eV?m occurrence. .
classroom use is granted without fee provided that copesiarmade or distributed In this setting, programming the algorithms that combine
for profit or commercial advantage and that copies bear ttiseand the full citation sensor and cloud information can be challenging Because
on the first page. To copy otherwise, to republish, to postesvess or to redistribute : .
to lists, requires prior specific permission and/or a fee. cars can have several hundred sensors each of which de-
SensSys'14November 3-6, 2014, Memphis, TN, USA. scribes low-level subsystem dynamics, and the cloud-based
Copyright(© 2014 ACM 978-1-4503-3143-2 ...$10.00 information can be limitless, determining the right congbin

tions of sensors and cloud information to detect events canprogrammer. In particular, our optimization algorithm re-
be challenging. For instance, whether someone is driving orders fact assessment (determining facts from sensdrs or t
dangerously can depend not just on vehicle speed, but oncloud) to minimize the expected latency of rule evaluation.
road curvature, the speed limit, the road surface condifion To do this, it leverages short-circuit evaluation of Boolea
traffic, visibility etc. predicates. The expected cost is derived feopriori proba-
As such, programmers will likely need to build their even- bilities of predicates being true, where these probabditire
t detectors in a layered fashion, first by building lowerdiev ~ obtained from training data. During the process of predicat
sensing abstractions, and then combining these abstiactio evaluation and short-circuiting, the optimizer also rezhic
to develop more sophisticated event detectors. In the exam-worst-case latency by evaluating cloud predicates in paral
ple above, a programmer can layer the dangerous driving de-lel when the parallel evaluation latency is cheaper than the
tector by first building an abstraction for whether the drige expected residual cost of evaluating the un-processed pred
speeding (using car speed sensors and cloud-speed limit inicates. More important, its optimization of expected cest i
formation), then an abstraction for whether this speedés li critical: because queries are continuously evaluatedirinc
ly to cause the driver to lose control (by analyzing the car’s ring worst-case latency on every evaluation can cause Data-
turn radius vis-a-vis the curvature of the road), and combin log to miss events.
these two abstractions to design the final detector. Beyond We have embodied these ideas in a programming frame-
comprehensibility and ease of programming, this layered ap work called CARLOG. In CARLOG, multiple mobile app-
proach has the benefit of re-use: sensor abstractions can be can instantiate Datalog rules, reuse rule definitions, and
re-used in multiple situations. For example, the absacti can concurrently query the rule base for eventa\RLOG
for analyzing whether driving speed is likely to cause a-driv includes several kinds of optimizations including proyabl
er to lose control can be used in an app that tells drivers whatoptimal fact assessment for a single query, and jointly-opti
speed to take an impending curve on the road. Finally, manymized fact assessment for concurrent queries. Experiments
of these event detectors may need to be tailored to individ- on a prototype o£ARLOG, and trace-driven evaluations on
ual users, since different users have different tolerafmes vehicle data collected over 2,000 miles of driving, shoveg th
safety, comfort, and performance. it is two orders of magnitude more efficient than Datalog’s
To address this challenge, we observe that a declarativenaive fact assessment strategy, detectsA% more events
logic-based language like Datalog [47] has many of the de- than the naive strategy, and consistently outperforms othe
sirable properties discussed above. Datalog is based on thalternatives, sometimes by3(85). These evaluations also
predicate calculus of first-order logic, and supports riegat demonstrate the efficacy of multi-query optimization: with
of rules. In our use of Datalog (83), sensors and cloud in- out this, latency is 50% higher on average and half the num-
formation are modeled as (time-varying) facts and applica- ber of events are detected.
tions define event detectors as rules which are conjunctions CARLOG is inspired by research in declarative program-
of facts. An event is said to occur at some time instance if ming, query optimization, and energy-efficient sensor and
the predicate corresponding to a specific rule is true at thatcontext recognition. It differs from prior work in its focas
instant. Because facts can be materialized at differemsjm latency as the metric to optimize (most prior work on mobile
we need to carefully specify the temporal semantics of eventdevices have focused on energy) and in its use of multi-query
detection. Our use of Datalog addresses the first pain pointoptimization (86).
in the following way: in Datalog, rules can be expressed in R
terms of othergrule)é, allowing g layered definitioﬁ of rules, 2 Background and Motivation
together with re-usability. Automotive Sensing.Modern cars contain one or more in-
A second challenge is having to reason about the coststernal controller area network (CAN) buses interconnectin
of accessing sensors and cloud-based information. Accessthe electronic control units (ECUs) that regulate intesudd-
ing cloud information can incur significant latency (sever- systems [29]. All cars built in the US after 2008 are required
al secondsn our experiments, §4), and designing efficient to implement the CAN standard. Cars can have up to 70 E-
sensor algorithms that minimize these costs for every auto-CUs, and these communicate using the Controller Area Net-
motive app can be difficult, if not impossible. It is possible work (CAN) protocols. ECUs transmit and receive messages
in Datalog for programmers to write rules carefully to im- that contain one or more sensor readings that contain infor-
prove the efficiency of rule execution. Datalog engines per- mation about a sensed condition or a system status indica-
form bottom up evaluation, so a programmer can re-arrangetion, or specify a control operation on another ECU. ECUs
predicates so that sensor predicates are evaluated finst. Ho generate CAN messages either periodically, or periogicall
ever, Datalog engines also perform optimizations to mini- when a condition is sensed, or in response to sensor value
mize redundancy, but because these engines are unaware @hanges or threshold crossings. The frequency of period-
the costs of acquiring predicates, an engine may foil theseic sensing depends upon the specific data requirements for
programmer-directed optimizations. More generally, €&pe a vehicle system. Certain types of information may be re-
ing mobile app developers to reason about this cost can in-ported by a module at up to 100Hz, whereas other types of
crease programming burden significantly. information may be communicated only at 1-2Hz. Exam-
To address this challenge, we have developed automatyples of sensor readings available over the CAN bus include:
ic optimization methods for rule evaluation that attempt to vehicle speed, throttle position, transmission lever pmsi
minimize latency (84). These methods are transparent to theautomatic gear, cruise control status, radiator fan sffeed,

capacity, and transmission oil temperature. provides the turn angle of the steering wheel, and a sensor

While the CAN is used for internal communication, it is that determines the yaw rate (or angular velocity about the
possible to export CAN sensor values to an external comput-Vertical axis). Continuously fusing this information caelj
er. All vehicles are required to have an On-Board Diagnostic determine when a driver is making a sharp turn. Finally, we
(OBD-I1) [1] port, and CAN messages can be accessed usingnote_that any such algorithm will include thresholds that de
an OBD-II port adapter. In this paper, we use a Bluetooth- termine safe or urjsafe sharp turns; thege thresholds are oft
capable OBD-Il adapter that we have developed in order to determined by driver preferences and risk-tolerance.
access CAN sensor information from late-model GM vehi- Consider a second example, an application that would like
cles. (Commercial OBD-Il adaptecan only access a subset to block incoming phone calls or text messages when a driv-
of the CAN sensors available to us). This capability permit- er is driving dangerously. Call blocking can be triggered by
s Bluetooth-enabled mobile devices (smartphones, tablets @ collection of different sets of conditions: a combinatasn
to have instantaneous access to internal car sensor informabad weather, and a car speed above the posted speed limit

tion. Some modern cars can have several thousand sensor@r bad weather and a sharp turn. This illustrates an event-
on-board. driven app, where events can be defined by multiple distinct

algorithms. More important, it also illustratks/ereddefini-

tions of events, where the call block event is defined in terms
of the sharp turn event discussed above. In 85, we describe
“several other event-driven apps.

Automotive Apps. The availability of a large number of sen-
sors provides rich information about the behavior of ingkrn
subsystems. This can be used to develop mobile apps forim
proving the performance, safety, efficiency, reliabiliénd :) .
comfort of vehicles [20]. Many of these goals can be affect- Datalog. Datalog [47] is a natural choice for describing sen-
ed by other factors: the lifetime of vehicle components can SOF fusion for event-driven apps. Itis a highly-mature log-
be affected by severe climate, fuel efficiency by traffic con- IC Programming language whose semantics are derived from
ditions and by terrain, safety by road surface and weather,the predicate calculus of first-order logic. Datalog pesmit
and so forth. Increasingly, information about these facter ~ the Specification of conjunctive rules, and supports negati
available in cloud databases, and because mobile deviees ar@"d recursion, and is often used in information extraction,
Internet-enabled, it is possible to conceive of cloud-éeb Integration, and cloud computing [27].

mobile apps that combine cloud information with car sensors Facts and RulesOperationally, a Datalog system consists of
in order to achieve the goals discussed above. two databases: aextensional databas@DB) which con-

In this paper, we focus on such mobile apps, specifically talns.groundacts and anntenslonal databas@DB) which
on event-driven appthat combine sensor and cloud infor- consists ofrules Facts describe knowledge about the ex-
mation innear real-time(safety-critical hard real-time tasks ~ternal world; in our setting, sensor readings and cloud in-
such as collision avoidance or traction control are beybadt formation provide facts instantiated in the EDB. Rules are
scope of this paper; specialized hardware is needed foe thes declarative descriptions of the steps by which one can infer
tasks). This class of apps is distinct from automotive apps higher-order information from the facts. Each rule has two
that record car sensor information for analytiesy(,for as- parts, eheadand abody. The head of a rule is amtom and
sessing driver behavior, or long-term automotive healim). ~ the body of a rule is a conjunction of seveatbms Each
other words, detected events are not just meant to be collect atom consists of gredicate which has one or more vari-
ed and reviewed later by drivers, but usedriaar real-time ables or constants as arguments. Any predicate which is the
apps that either act to alert the driver or perform an action o head of arule is called an IDB-predicate, and one that occurs
their behalf €.g.,an app might wish to block calls or texts ©nly in the body of rules is called an EDB-predicate.
based on whether a driver is executing a maneuver that re- For example, the code snippet shown below describes a
quires their attention) or used by crowd-sourcing apps to no fule that defines a dangerous driving event. The head of the
tify other drivers €.g.,an app might upload a detected event fule contains the predica@ngerousDriving, with four
indicating an icy road to a cloud service so that other cars Variables, and the body is a conjunction of several preeigat
can receive early warning of this hazard). Therefore, in our Some of which are automotive sensors (like ae Rate
setting, detection latency and detection accuracy areimpo and theSteer_Angl e) and others access cloud information
tant design requirements. These two criteria are related: a Such asSpeedLimit. Dangerous driving is said to occur

we show in §5, poorly designed detectors which incur high Whenever the yaw rate exceedsr28i/s, the steering angle
latency can also incur missed detections. exceeds 15 and the vehicle speed exceeds the speed limit

. _ by a factor of more than 1.2. Thus, for example, when the
ExamplesConsider an app that would like to detect whena v, pat e sensor has a value 38d/s (when this happens, a
driver is executing a dangerous sharp turn. This informatio ¢, crvaw Rat e(30) is instantiated in the EDB), and the steer-
can be made available to parents or driving instructors, or ing angl_e is 60, and car is being driven at 45mph in a 30mph
used for self-reflection. Detecting a sharp turn can beyrick zone, a new fadBanger ousDr i vi ng(30, 60, 45, 30) is in-

because one has to rule out legitimate sharp tums at intergiantiated into the EDB and signals the occurrence of a dan-
sections, or those that follow the curvature of the road. Ac- gerous driving event.

cordingly, an algorithm that detects a sharp turn has tosscce fanger ousbri ving(x, y, z, W : -

an online map database to determine whether the vehicle is Yaw_rate(x), x > 15, Steer_Angle(y), y > 45,

at an intersection, or to determine the curvature of the.road iy by 15, o a ey

In addition, this algorithm needs access to the sensor that

More generally, the head of a rule is true if there exists an
instantiation of values for variables that satisfies thenstn
the body. As discussed above, one or more atoms in the body

can be a negation, and a rule may be recursively defined (the ‘/o Interface OC{}‘;Zer \\
head atom may also appear in the body). An atom in the = pI
body of one rule may appear in the head of another rule. A

. & [Fclosa— [sensor— Query Plan ‘
Rule Evaluation and OptimizationDatalog is an elegant Acquisition | | Acquisition- NN
declarative language for describing computations ovea,dat | e o /
and aDatalog engineevaluates rules. In general, givena ~ ~"77TTTTTpTTTTTTTTToTTTTTOTom T
specific IDB, a Datalog engine will apply these rules to infer AP~ ™ -
new facts whenever an externally-determined fact is instan & P

Weather Yaw rate

tiated into the EDB. Datalog also permisieries queries
describe specific rules of interest to a user. For example,
while the IDB may contain several tens or hundreds of rules, Figure 1—CARLOG Design
a user may, at a given instant, be interested in evaluating

the Danger ousDri vi ng rule. This is expressed as a query

2- Danger ousDr i vi ng(yaw, angl e, speed, i nit). CARLOG Sensor and Cloud PredicatesCARLOG provides
. substantially the same capabilities as Datalog, and itsheri
3 CARLOG Design all of its benefits (these are discussed below). Like Data-

In this section, we describe the design of a programming log, cARLOG supports conjunction and negation (85 shows
system calledcARLOG that simplifies the development of examples of rules using negation). Unlike DatalogrLOG
event-driven automotive appsARLOG models car sensors does not support optimization for recursion: we have lg th
and cloud based information as Datalog predicates, and appso future work, as discussed in §4.
can quUeryCARLOG to identify events. CARLOG extends Datalog to support acquisitional query

Figure 1 shows the internal structure ®kRLOG. The processing [36]: the capability to process queries that de-
Sensor Acquisitiorand Cloud Acquisitionmodules access pend on dynamically instantiated sensor and cloud data. To
information from the car’s sensors and the cloud, respectiv do this, sensor and cloud information are modeled as EDB-
ly, and provide these to thaterfacemodule in the form of predicates; we use the terms sensor predicate and cloud pred
Datalog facts. Thenterfacemodule takes (1) app-defined icate, respectively, to denote the source of the predifate.
queries and (2) facts from the sensors, and passes these texampleyaw_Rat e(x) is a sensor predicate that models the
a modified Datalog query processing engine that performsyaw rate sensor in a vehicle, aBpeedLi i t (w) is a cloud
guery evaluation. predicate that models the speed limit at the current lonatio

CARLOG introduces two additional and novel compo- (82). These predicates are predefined EDB-predicates that
nents, theQuery Optimizerand theQuery Plan Evaluatar applications can use when defining new rules.

The Query Optimizer statically analyzes a query’s asseciat Benefits ofcARLOG . Prior work [20] has proposed a proce-
ed rules and determines an evaluation plan for rule exetutio q4yral abstraction for programming automotive apps. Com-
Unlike traditional Datalog optimization, the Query Optiti pared to such an abstractictRLOG is declarative due to

er attempts to minimize query evaluation latency based onits yse of Datalog, so apps can define events without hav-
the latency of acquiring cloud information, instead of the ing to specify or program sensor or cloud data acquisition.
number of rules to be evaluated. The output of the Query Fyrthermore, apps can easily customize rules for indiidua
Optimizer is a query plan executed by the Query Plan Eval- ysers: the dangerous driving rule in §2 has several thresh-

uator. In the remainder of this section, we desciob&LoG olds (e.g., 45 for Steer_Angl e), and customizing these is
in more detail, and in 84 we discuss the Query Optimizer and simply a matter of instantiating a new rule.
Query Plan Evaluator. Since cars have several hundred sensors and Datalog is

How Apps useCARLOG . Event-driven apps instantiate Dat- a mature rule processing technology that can support large
alog rules incARLOG. Typically, these rules define events rule basescARLOG inherits scalability from Datalog. This
for which an app is interested in receiving notifications. In scalability comes from several techniques to optimize edle
Datalog terminology, these rules constitute the IDB. Rules valuation. In general, rule evaluation in Datalog has a long
instantiated by one app may use IDB-predicates (heads ofhistory of research, and many papers have explored a vari-
IDB rules) instantiated by other apps. ety of techniques for optimizing evaluation [47, 13]. These
Apps can then pose Datalog queriescteRLOG. When techniques have proposed bottom-up evaluation, top-down
a query is posed; ARLOG first identifies the facts needed to evaluation, and a class of the program transformationedall
evaluate the query. Then it continuously evaluates theyquer magic set486). All of these approaches seek to minimize
by monitoring when predicates from the relevant sensors be-or eliminate redundancy in rule evaluation, and we do not
come facts. As discussed in the previous section, instantia discuss these optimizations further in this paper. In the ne
tion of the query predicate as a fact corresponds to the eccur section, our paper discusses an orthogonal class of ojtimiz
rence of an event and therefore the interested app is notifiections that have not been explored in the Datalog literature.
when this occurs. Using this approach to query evaluation CARLOG also inherits other benefits from Datalog. In
allowsCARLOG to also support multiple concurrent queries. CARLOG, rule definitions can include IDB-predicates de-

fined by other apps. As such, rule definitions can be lay-
ered, permitting significant rule re-use and the definitibn o
increasingly complex events. As discussed inG2] Bl ock
can be defined in terms of BangerousDriving IDB-
predicate instantiated by another app.

CARLOG also inherits some of Datalog’s limitations:

some sensing computations may require capabilities beyond

Datalog. Consider a predicate defined in terms of the odome-
ter. On some cars, the odometer sensor may not be expose
to the consumer; apps can approximate odometry by math-
ematically integrating speed sensor values, but this cempu

3500

3000

! [C3 Cloud mN T-Mobile WEE AT&T
2500 i

N
=1
o
=1

—
I
=3
=1

Latency (ms.)

1000

500 ;I |
—

Gas Price

e
Traffic Incidents

d

F =
Traffic Speed

Figure 2—Predicate acquisition latency

tation cannot be expressed in Datalog. In this case, we an-

ticipatecARLOG will include a “virtual” odometer sensor as
a Datalog predicate which is implemented in a different lan-
guage (say Java) and integrated intot&LOG runtime.

4 CARLOG Latency Optimization

In CARLOG, programmers do not need to distinguish sen-
sor and cloud predicates from other EDB-predicates. How-
ever, unlike other Datalog EDB-predicates, sensor anciclou
predicates incur predicate acquisition latencyhich is the
latency associated with acquiring the data necessary to-eva
ate the predicate. In this section, we show ltkARLOG can
optimize predicate acquisition latency in a manmanspar-
ent to the programmer

4.1 Predicate Acquisition Latency

Cloud predicates incur high latency.Like several prior
sensor-based query processing languages,(36]), CAR-

LOG supports acquisitional query processing, where sensor
data and cloud information are modeled as predicates, bu
may be materialized on-demand. However, an important d-
ifference is that in the automotive environment materia{jz
cloud predicates can incur significant latency.

To illustrate this, Figure 2 shows the latency incurred
when accessing three different cloud predicates using two
different carriers. The three predicates check, respectiv
ly, for whether the current speed exceeds the average traffi
speed reported by Google, whether there are any traffic in-
cidents reported by Bing’s traffic reporting service at a giv
en location, and whether the current gas price reported by
MyGasFeed exceeds a certain value. (In gener@RLOG
permits cloud predicates implemented by multiple cloud ser
vices.) In calculating these latencies, we conducted exper
iments where we drove a car at an average speed of abou
30mph (maximum 70 mph) and configured two mobile de-
vices with different carriers to acquire individual preaties.
Figure 2 shows the latency incurred on the cloud side (our
phones queried a server we control, which in turn issued re-

quests to the cloud services listed above), and the network

latency (total request latency minus the cloud latency)o Tw
features are evident from this figure: (a) cloud latency can
vary significantly across services (MyGasFeed is less raatur
than the other two services, so is slower), and (b) netwerk la
tency is highly variable on both carriers, and several sgson
in the worst case (resulting from handoffs due to high mobil-

ity).

t

C

default rule evaluation engine is agnostic to acquisitiost c
and acquires predicates sequentially. Thus, if a rule wesl
multiple cloud predicates, the total predicate acquisita
tency is the sum of the latencies required to evaluate each
cloud predicate. As we discuss below, it is possible to opti-
mize this by acquiring all the cloud predicates in parael

the total latency in this case is the maximum latency require
to evaluate a cloud predicate. Even in this case, acquisitio
latency can still be on the order of several seconds.

Overview of latency optimization iCARLOG. CARLOG
performs latency optimization by statically analyzing keac
query and computing an optimafder of executiorfor the
query’s predicate acquisition. This computation is perfed
once, when an application instantiates a query. Subsequent
ly, whenever a query needs to be re-evaluated (as discussed
above, this happens whenever a value of a sensor changes),
this order of predicate acquisition is followed.

CARLOG's latency optimization builds upon short-circuit
evaluation of Boolean operators. In a conjunctive rule,

if one predicate happens to be false, the other predicates do
not need to be evaluatedtARLOG takes this intuition one
step further, and is based on a key observation about the
automotive setting: some predicates are more likely to be
false than others. Consider our dangerous driving example
in 82. During experiments in which we recorded sensor val-
ues, we found that the predicatew Rat e(x) ,x > 15 was

far more likely to be false tha®t eer _Angl e(y) ,y > 45. In-
tuitively, this is because drivers do not normally turn agthi
rates of angular velocity (yaw), but do turn (steer) often at
intersections, parking lotgtc. In this case, evaluating the
Yaw Rat e first will avoid the cost of predicate acquisition
for St eer _Angl e, thereby incurring a lower overall expect-

ed cost for repeated query execution as compared to when
St eer _Angl e is evaluated first.

In general, determining the optimal order of sensor ac-
quisition can be challenging as it depends both on the cloud
predicate acquisition latency and probability of the pcatk
being true (in 85, we consider and evaluate several alterna-
tives). If it were less expensive to acqustecer _Angl e than
Yaw Rat e, then the optimal order would depend both upon
the acquisition latency and the probability of a predicate b
ing true. CARLOG leverages this observation, but for cloud
predicates. Cloud predicates can differ in acquisitiort cos

Naive Datalog acquisition can be expensi¥dthough Dat-
alog provides several benefits for event-driven automotive
apps, its rule evaluation can incur high latency, because th

1As an asidecARLOG's optimizations can be applied to other settings
where predicate acquisition costs differ. We have defetinégito future
work.

(Figure 2), and some cloud predicates are more likely to be /Dange'mus\‘
false than others. Thus, by re-ordering the acquisition of \Driving)
cloud predicates;ARLOG canshort-circuit the acquisition
of some cloud predicates avoid acquisition entirely if any

of the sensor predicates are false. oy 5 >1.25g;jdumn,

Estimating predicate probabilitiesA key challenge for la- Cost: a G I
tency optimization is to estimate the probability of a predi
cate being true. We estimate these probabilities using-trai
ing data, obtained by collecting, for a short while, sensar a
cloud information continuously while a car is being driven.
When an application instantiates a queTRLOG'S Query
Optimizer statically analyzes the query, extracts the @ens
and cloud predicates, and computes the a priori probability
of each predicate being true from the training data. For ex-
ample, if the training data ha$ samples offaw _Rat e, but
only n of these are above the threshold of 10, then the cor-
responding probability is/N. These probabilities, together
with the predicate latencies, are inputs to the optimizatio
algorithms discussed below. We note that accuracy of the
probability estimates affects only performance, not adre
ness. One corollary of this is that training data from one-dri
er can be used to estimate probabilities for similar drivers
without impacting correctness, only performance.
Furthermore, rather than use a priori estimate, we can up-
date cost and predicate probability estimates dynamically
and predicate evaluation could adapt accordinglg.(if in
a particular area latency of query acquisition is low, ohi t . .
vehicle changes hands and the new driver's behavior is sig-4-2 Terminology and Notation
nificantly different, the evaluation order could changele W In Datalog, a query can be represented guaof tree
leave a detailed implementation of this for future work, but The internal nodes of this proof tree are IDB-predicated, an
we note that these generalizations would not change the al-the leaves of the proof tree are EDB-predicateARLOG,

gorithms presented in the paper, but would only change how!eaves represent sensor and cloud EDB-predicafégure 3
the inputs to these algorithms are computed. shows the proof tree for the dangerous driving example rule.

In general, a proof tree will have a s8tof n leaf pred-
icatesGy,...,G,. EachG; is also associated with a cost
(in our setting, the cost is the latency) and a probabjtgf
being trué The order of predicate evaluation generated by
£ARLOG is a permutation o6, such that there exists no oth-
er permutation o6 with a lower expected acquisition cost.

For Figure 3, the expected cdsiof evaluating the predi-
cates in the ordeB;, G2, Gs can be defined recursively as:

‘ Yaw rate > 15 ‘ ‘ Steer Angle>45 ‘ ‘\ Vehicle_Speed

Figure 3—Expansion Proof Tree for Rule 2

this strategy can miss events. By optimizing latercyr-
LOG can reduce instances of missed events.

Instead of dropping thé&aw Rat e sensor readings, a
rule engine can queue each sensor change to be evaluat-
ed sequentially or evaluate each sensor change in parallel.
This is fundamentally infeasible because the arrival réite o
events (50Hz) is higher than the service rate (1Hz). Missing
events is unacceptable, since for some applications the pre
cise count of events may be important. For example, miss-
ing aDanger ousTur n event can, in an app that monitors teen
driving, translate into incorrect estimates of the qualitthe
teen driver). Similarly, a missed icy road condition carain
outsourced app, fail to alert other drivers of a dangerous co
dition. As we quantify later in our experimentsARLOG'S
latency optimization improves event detections by a factor
3-4x over Datalog.

Finally, although our algorithms can be used to optimize
energy, a discussion of this is beyond the scope of the paper.

Minimizing expected latencylhe output of our algorithms

is a predicate acquisition order thainimizes the expected
latency Without latency optimizations;ARLOG can miss
events To understand why, first recall that,dmRLOG, rules

are continuously evaluated. Now, suppose an app defines
rule based on th¥aw Rat e sensor (with a threshold of 15,
as in our example in §2), and a cloud predicate. First, sup-
pose thatraw Rat e and the cloud predicate have the same
acquisition cost (say 20ms). Then, one can define an ide- E[G1, G2, Gs] = p1*E[Gy,G3|G1 = 1]
al event detection rate as the rate of detected events if the +(1— p1) +E[Gp, Gs|G1 = 0] +-C
rule containing these predicates was evaluated every 20ms. (1-p 2:28121 = 1
In practice, however, cloud predicate acquisition costm@an Because evaluation can be short-circuited wBeris false,
higher. Suppose, in our example, that it is 1 second. To eval-this results in the following expression:

uate a rule, an unoptimized evaluation strategy would wait

until the cloud predicate was acquirae(, wait for one sec- E[G1,G2,Gs] = p1*E[G2,G3] +C1 2
ond), then evaluate the predicate using the latest valuweof t) _))
Yaw Rat e sensor. This strategy does not evaluate all other 1 hiS expected cost calculation can be applied to any size
Yaw_Rat e readings (in 1 sec, this sensor reports 50 values), set of predicates. Using a brute force approach, one can find
and some of these readings may have been above the thresh= 3 . .

: e n CARLOG, leaves can represent EDB-predicates which are not sensors
old. A_S such, this U”OPt'm'Zed strategy would ,have a lower or cloud predicates. We omit further discussion of this galimation as it
detection rate than the ideal discussed above; in othersyord s straightforward.
4pi andci may be better modeled using a distribution rather than desing

1)

20ur predicate estimation technique is similar to branchlipters in average value, as in this paper. We have left an exploratidhiexten-
computer architecture: based on a history of driving traoces approach sion to future work. However, as we have discussed before;tmices for
estimates the probability of a predicate being true (théognaf a branch pi andc; generally do not affect correctness of predicate evaloatmly

(not) taken). latency.

the expected cost for each permutation of aGeind iden- Now consider the other possible orderit@y, Gz, G1).
tify the permutation with the lowest cost. In the following In this case, the expected costcis+ p2cs + (1 — p2ps3)ci.
sections, we explore algorithms for determining the optima Consider predicat®; of Figure 4(a) in isolation. This pred-
evaluation order for: (a) conjunctive rules without negati icate has areffective cosbf ¢ + pecs (for similar reasons
(b) conjunctive rules with negation, and (c) concurrent-con as above) and aeffective probabilityof (1 — ppps) (since
junctive rules with no negation and shared predicates. Ex-R; is negated, it is true only when bo@, and Gz are not
ploring optimizations for concurrent conjunctive ruleglwi simultaneously true). By Theorem 4.4ARLOG produces

negation and shared predicates is left to future work. an optimal order ofRy, Gy) only if 2% < 7% Af-

4.3 Latency Optimization: Algorithms ter S|mpl|fy|ng the expression on the LHS, this order implie
¢ .

Single Conjunctive Query without Negation. Consider a that i3 < 5. Therefore, the cost ofGz, Gs,Gy) is Iess

single conjunctive query with leaf sensor and cloud pred- than or equal to the cost ¢G2,G1,Gs) only if 2 < 1%
icates and where none of the predicates are negated. IntuTherefore, an evaluation order in whi€h is mterleaved be-
itively, the lowest expected cost evaluation order pripes tweenG; andGs is equal or greater in cost than other orders
predicates with a low cost (latency) and low probability of where itis not.

beingtrue. For conjunctive queries without negation, this

intuition enable€ARLOG to use an optimal greedy algorith- Algorithm 1 : OPTIMAL EVALUATION ORDER FOR
m with O(n log n) complexity [25] to compute an ordering QUERIES WITHNEGATION
with the minimal expected cost. INPUT : Proof treeT
C1 Co Cn 2: ALS = set of minimal negated sub-treesTin
< <...<) 3: forall t € ALS do
1-pp = 1-p2 1-pn 4: Compute optimal evaluation order fousing Theorem 4.1

. . . . 5: ted cost of optimal evaluati derff

then G,Gy,...,Gy, is the predicate evaluation order with , Cert(t) = EXpecke cos' ot opimarevaluation ordertor. .
6: peff(t) =1—]i, pi, wherep;s are the probabilities associated with

lowest expected cost. the leaf predicate df
Single Query with Negation. The basic form of Data- 7: Replacet with a single node (predicate) whose costds;(t) and
log provides only conjunctiveAND) queries. Fundamen- . Whose probability ige(t)

. . . . ALS = set of minimal negated sub-treesTin
tally, negation cannot be expressed using conjunctiorealon g Compute optimal evaluation order férusing Theorem 4.1

For this reason, many Datalog systems incorporate support
for negated rules and negated IDB-predicates. In the au-
tomotive domain, we have found many event description- This discussion motivates the use of an algorithm (Al-
s to be more naturally expressed using negation. Consid-gorithm (1)) that independently processes subtrees of the
er a predicateRi ght TurnSi gnal in CARLOG that deter- proof tree using the algorithm for Theorem 4.1 as a building
mines whether the right turn indicator is on. The predicate block. This algorithm operates aninimal negated-subtregs
(NOT Ri ght TurnSi gnal) is useful to express some rules which are subtrees of the proof tree whose root is a negated-
(85) but cannot be expressed in a purely conjunctive ver- predicate, but whose subtree does not contain a negated pred
sion of Datalog, since the negation is tO® of two cases icate. Intuitively, Algorithm (1) computes the effectivest
(Left TurnSi gnal ORNoSi gnal). and effective probability for each minimal negated-subtre

A simple example of a prooftree for a query with negation and replaces the subtree with a single node (or predicate) to
is shown in Figure 4. In this example, the IDB-predicBie which the effective cost and probability are associated. At
is negated. Short-circuiting evaluation for negated matgis the end of this process, no negated subtrees exist, and Theo-
is different than in the purely conjunctive case. For exampl rem 4.1 can be directly applied.
in Figure 4, we can only short-circuit the evaluation of the For conjunctive queries, there is a single evaluation order
guery when bottG, andG3 are true, but if one is false, we Because of more complex short-circuit evaluation rulds, th
must continue the evaluation. is not always the case for queries with negated predicates.

In this paper, we develop an algorithm for queries with The output of our algorithm for negation is actually a bina-
negation that relies on an exchange argument, which we il- ry decision treghat defines the ordering in which predicates
lustrate using Figure 4(a). Suppose that the optimal ordershould be evaluated. For example, in Figure 4(a), if the e-
of evaluation ofR; is (Gz,G3). Then in the optimal or- valuation order i§G, Gz, G1), the decision tree is as shown
der of evaluation for the overall queriRH, G1 cannot be in Figure 4(b). In this tree, i, is false, thernG; must be
interleaved betwee, and Gz. Assume the contrary and evaluatedG; is also evaluated i6; is true, butGs; is false.
consider the following order of evaluation(Gz,G1,Gs). We have proved (see Appendix A) Algorithm (1) to be
For this ordering, it can be shown that the expected costoptimal among allinear strategies: in these strategies, the
is ¢ + €1 + p1p2c3: Gz must be evaluated, and regardless order of predicate evaluation is fixed, but the evaluation of

of whetherG; is true or false,G; must be evaluated>; some predicates might be skipped if unnecessary. There is a
is only evaluated iiG, and G3 are both true. By a similar class of strategies, calledlaptivestrategies, which can have
reasoning, it can be shown that the cost{@f,G;,Gs) is lower expected cost, where the order of evaluation depend-

C1+ p1C2 + p1p2c3. Comparing term-wise, the cost of this s on the values of already-evaluated predicates. In gener-
order is less than or equal (&2, G1, G3). al, adaptive strategies perform better, but finding an agtim

4 I
NOT ‘Gz ‘
o Es @) (G
a| O\ VANEEVAN
|6, Gs 0 \\ G \ 1 0
D2 P3
&) & S

(&) Proof Tree (b) Correspond-

of an Example ing Decision
Query with Tree
Negation

Figure 4—Example of a Negation Proof Tree and its Decision Tree

ing X andY in parallel is beneficiabnly if the minimal ex-
pected cost of acquiring both of themlgger thanthe cost
of acquiring them in parallél

CARLOG uses this observation to further optimize predi-
cate acquisition latency. Considepredicates and, without
loss of generality, assume an evaluation o@gIGy, ..., Gy.
Suppose thaG;, Gy, ...,G; has already been evaluated and
all of those predicates are true. Then, considemtit@mal
residual expected cosf evaluating the remaining predicates
(€ {Gi+1,...,Gn}, this can be computed using the algorithms
described above). If this residual cost is greater thanghe |
tency cost of evaluating those predicates in paratleRLOG
reduces latency by acquiring the remaining predicatesrin pa
allel.

4.5 Putting it All Together
When an app instantiates @aRrRLOG query, theQuery

adaptive strategy for the negation case is known to be NP-Optimizerstatically analyzes the query and assigns proba-

hard [25].

Multiple Queries without Negation. In CARLOG, multiple
automotive apps can concurrently instantiate queriess@he

bilities to each sensor or cloud predicate, as discussedabo
The Query optimizer maintains average latencies for aequir
ing cloud predicates, from offline measurement or gathered

queries can also share predicates. Consider two queries, onas part of the training process discussed earlier.

which uses predicatesandY, and another which us&sand
Z; i.e.,they share a predicat Now, suppose the probabil-

Using these costs and probabilities, the Query Optimiz-
er applies the appropriate form of latency optimization dis

ities of X, Y andZ are 0.39, 0.14 and 0.71 respectively, and cussed above. This is @ne-time computatioperformed
their costs are 201, 404, and 278. Jointly optimizing these When the query is instantiated. The output of this optimiza-

queries (by realizing that evaluatifvgfirst can short-circuit
the evaluation oboth queries) results in an ordéY, X,Z),

tion is a decision treee(g., Figure 4(b)) that is passed to
the Query Plan Evaluator, which repeatedly evaluates @sieri

which has an expected cost of 471.1. Alternative approachesvhen new sensor facts are materialized.

like individually optimizing these queries using Theorerh 4

We have left other potenti@laARLOG enhancements to fu-

and evaluating the shared predicate only once, or using The-ture work. For example, one approach to further reducing

orem 4.1 but assigning half the cost¥ofo each query, incur
higher costs (643.9 and 521.6 respectively).
This multi-query optimization, unfortunately, is NP-

latency is to use recently-derived facts to short-circadt f
establishment. We know that if a driver is on the highway
and no obvious deceleration or large turn occurs, then driv-

complete: we have proved this by reduction from Set Cover €r is still on the highway. This can be expressed easily in
(see Appendix B). (We do not know of prior work that has Datalog, but requires support for recursion, which Datalog
posed this multi-query optimization, or examined its com- supports but for which we have not designed optimization
plexity). We have designed a greedy adaptive heuristic for algorithms. As another enhancemer4RLOG can also up-

this strategy that is loosely modeled afte®édogn) approx-
imation algorithm for set-cover [19]. We have yet to prove
approximation bounds for our heuristic.

Intuitively, this heuristic works as follows. Ld&® be a

date its predicate probabilities continuously to tracknzies
in driving habits.
5 Evaluation
In this section, we present evaluation results for several

predicate that has not yet been evaluated, whose probabilevent-driven automotive apps @dARLOG.

ity is pi and costci. Let B occur inN; rules (or proof g 1 Methodology and Metrics
H4H =P . . ,
trees) that have not yet been resolved. TH8H- rep- cari oG Implementation. Our implementation ofCAR-

(d
resents the benefit-to-cost ratio of evaluatigOur greedy LOG has two components: one on the mobile device and
heuristic, at each step, picks tiftamongst all un-evaluated the other on the cloud. The mobile device implementation
predicates, which has the highest benefit-to-cost ratios Th pre-defines sensor and cloud predicates, and some common
greedy heuristic has a cost ©fn?), wheren is the number aggregation functions (count, min, max and avg). Rules can
of predicates. As we show later, multi-query optimization be expressed by these predicates with aggregation fuaction
can provide significant latency gains in practice. s, or in terms of other rules. ThearRLOG API provides
4.4 Parallel Acquisition functions for installing and removing rules, and instajlin

Naive Datalog fact assessment evaluates predicates se@nd removing queries. Query responses are returned through
quentially. The latency of cloud predicate acquisition can inter-process messaging mechanisms. The mobile device
be reduced by issuing requests in parallel. In this casenwhe implementation includes the query optimization algorithm
acquiring predicate€; andG,, the resulting latency is the S described in 84 and code for acquiring local sensors from

Iarger of the two individual _Iatgnm_es. SWe do not assume thtandY are independent. They may be correlat-
HOVV_eVe_r, para_”(_?l_ acquisition Is not always bette_r than ed. But, in general, both cloud predicates would need to ioieved, since
short-circuit acquisition (the converse is also true). éicq a rule can use different thresholds for each predicate.

the CAN bus over Bluetooth. Our query evaluation engine
is a modified version of a publicly available Java-based Dat-
alog evaluation engine called IRIS [9]. Our modifications
implement the Query Plan Evaluator, which executes the de-
cision tree returned by the Query Optimizer. The local senso
acquisition code is 14,084 lines of code, and the query pro-
cessing code, including optimization and plan evaluati®n,
6,639 lines.

The cloud sensor acquisition componentafRLOG ac-
cesses a cloud service front-end we implemented. This-front
end supports access to a variety of cloud IDB-predicates: th
curvature of the road, whether it's a highway or not, the cur-
rent weather information, list of traffic incidents near thue-
rent location, the speed limit on the current road, whether
the vehicle is close to an intersection or not, the curreat re
time average traffic speed, and a list of nearby landmark-
s including gas stations (and associated gas prices). Ou
cloud front-end aggregates information from several oth-
er cloud services; map information is provided with Open
Street Map (OSM [26]), weather information from Yahoo
Weather Feed [22], gas prices from MyGasFeed [22], traffic
information from Bing Traffic [8], place-of-interest andreu
rent traffic speed information from Google [24]. The cloud
front-end is about 700 lines of PHP code.

Methodology and Datasets. To demonstrate some of the
features ofcARLOG, we illustrate results from an actual in-
vehicle experiment. However, in order to be able to accurate
ly compareCARLOG's optimization algorithms against other

r

TrafficSignSpeeding:1

Sharpturn:1 CarelessTu

HwySpeeding:1 y¢ SlowRoughRoad:1

irdBrake:1

@ TrafficsignSpeeding

Map data ©2014 Google - Terms of Use

Figure 5—Events detected bgARLOG and byNaive

ing on such a surfaceRgughRoadTurn), or driving on

the rough road during bad weathd&oghRoad\\éat her);
speeding or sudden hardbrake while passing the traffic light
(Traf ficSignSpeedi ng andTraf fi cSi gnHar dBr ake); fi-
nally, executing a turn without activating the turn signal
(Carel essTurn).

Many of these event descriptions are, by design, lay-
ered. For example, thghar pTur n\\eat her event uses the
Shar pTur n rule (Figure 6). As discussed before, we expect
that programmers will naturally layer event descriptidoes,
cause this is a useful form of code reuse. Layering permits
sharing of predicates and allows us to also evaluate multi-
query execution and to quantify the benefits of joint opti-
mization of multiple queries. On average each rule uses 3.6
sensor predicates and 2.3 cloud predicates (cloud predicat
are shown in bold in Figure 6). The largest and smallest num-

alternatives, we use trace analysis. For this analysisolve ¢ bers of sensor predicates in a rule are 7 and 2, respectively,
lected 40 CAN sensors (sampled at the nominal frequency,and of cloud predicates 4 and 0. Finally, six of these rules
which can be up to 100Hz for some sensors), together with use negation. A good example of the use of negation is the

all the cloud information discussed above retrieved cantin
ously, from 10 drivers over 3 months. When collecting these

definition of theBadRTur nSi gnal predicate; we have earlier
(84) motivated the need for negation using this rule.

readings, we also record the latency of accessing the sensorComparison for Trace-Driven Evaluation. Our evalua-

and cloud information. Our dataset has nearly 2GB of sensor
readings, obtained by driving nearly 2,000 miles in diffdre
areas. We use this dataset to evaluzteLoG as described
below.

Event Definitions. To evaluatecARLOG, we created differ-
ent Datalog rules that cover different driving related dégsen

tions use 10% of the dataset to compute the predicate prob-
abilities for the 21 rules, and use the remaining 90% of the
data set to evaluate the optimization algorithms. Our esalu
tion compare€ARLOG's latency optimization against sever-

al alternatives. ANaiveapproach always acquires all cloud
predicates in parallel during query execution; this repnés

Some rules are inspired by existing market apps such as? simple optimization beyond what a standard Datalog en-

RateMyDriving [42], others by academic research [28, 30],
while the rest were derived from our collective driving ex-
perience. These include (Figure 6): a sudden sharp turn
(Shar pt ur n); speeding in bad weatheSgeedi ng\Weat her);

a sharp turn in bad weatheiSh@r pTur n\at her); a
left turn executed with the right turn indicator on
(BadRTur nSi gnal) and vice versaBadLTur nSi gnal) and
sharp turn variants of thes®adRShar pTur nSi gnal and
BadLShar pTur nSi gnal); finding the cheapest gas station
within driving range GasStation(p); a slow left turn
(Sl owLTur n); tail-gating while driving Tai | gat er); several
events defined for highway driving at speéidySpeedi ng),

or having the wrong turn indicator on the highway
(HwyBadRTur nSi gnal and HwyBadLTur nSi gnal), or exe-
cuting a sharp turn on the highwaky Swer vi ng); a le-
gal turn at an intersection at high speé&ddt Tur n); driv-

ing slowly on a rough road surfac8l wRoughRoad), turn-

gine would do. A slightly cleverer strateg@loud-Parallel
acquires cloud predicates in parallel only when all sensor
predicates evaluate to true. This strategy could be adthieve
by a programmer re-ordering predicates in rules so that lo-
cal sensors appear first in rule descriptions §&lyo other
approaches consider 2 different predicate acquisitioererd
s, and employ short-circuited evaluatidnowest Prob first
andLowest Cost first In the Lowest Prob first predicates
are evaluated in order of increasing predicate probalfaisy
learnt from traces), while with lowest cost predicates are e
valuated in order of increasing predicate cost.

Our final two alternatives require some explanation.
Some of the information made available by our cloud service

6A variant ofCloud-Parallelcan short-circuit computation as predicates
are fetched. This is latency-optimal but would send manyenotoud re-
guests than necessary. Especially for cloud services ltaage per request
or by data volume, this might be an undesirable alternative.

Rule Name Rule Definition
SteerWheelAngle(?angle), ABS(?angle) > 30, YawRate(?yaw), GREATER(ABS(?yaw), 15), Intersection(?intersect), NOT(?intersect), Curvature(?curv), LESS(ABS(?curv), 30), LatAcc(?latacc),

S GREATER(ABS ?latacc), 2)
SpeedingWeather Weather(?weather), NOT(GoodWeather(?weather)), SpeedLimit(?limit),VehicleSpeed(?speed), LESS(MULTIPLIER(?limit, 1.2), ?speed) , GREATER(?speed, 35)
SharpTurnWeather Weather(?weather), NOT(GoodWeather(?weather)), SharpTurn(?angle, ?yaw,?latacc, ?intersect, ?curv)
LeftSignalOn LeftSignal(?signal), COUNT (?signal) > 1
RightSignalOn RightSignal(?signal), COUNT (?signal) > 1
GoodLTurn LeftSignalOn(?signal), SteerWheelAngle(?angle), ?angle < -15
GoodRTurn RightSignalOn(?singal), SteerWheelAngle(?angle), ?angle > 15
BadRTurnSignal NOT GoodRTurn(?signal, ?angle), RightSignalOn(?signal)
BadLTurnSignal NOT GoodLTurn(?signal, ?angle), LeftSignalOn(?signal)
GasStationOp ion(?distance), GasPrice(?price, ?avgprice), FuelRate(?fuelrate), FuelLEFT (?fuelleft), ?price < ?avgprice, DIVIDE(?fuelleft, ?fuelrate)> ?distance
BadRSharpTurnSignal Sharpturn(?angle, ?yaw,?latacc, ?intersect, ?curv), BadRTurnSignal(?angle,?single)
BadLSharpTurnSignal Sharpturn(?angle, ?yaw,?latacc, ?intersect, ?curv), BadLTurnSignal(?angle,?single)
SlowLTurn Curavture(?curvature), LESS(ABS(?curvature), 30), Vehi ?speed), Ci d(?curSpeed), ?speed < ?curSpeed, Intersection(?intersect), ?intersect = True, LeftSignalON(?signal)
Tailgater HwySpeeding(?throttle, ?engine, ?hwy, ?limit, ?speed, ?trac), Traffi i ?traffic), TrafficOnWay(?traffic)
HwySpeeding Throttle(?throttle), ?throttle > 20, EngineSpeed(?engine), ?engine > 180, Highway(?hwy), ?hwy:t;:l_el:&eedumit(?limit), VehicleSpeed(?speed), LESS(MULTIPLIER(?limit, 1.2), ?speed) Traction(?trac),
HwyBadRTurnSignal HwySwerving(?angle, ?engine, ?hwy, ?limit, ?speed), BadLTurnSignal(?angle,?single), TrafficIncident(?traffic), TrafficOnWay(?traffic)
HwyBadLTurnSignal HwySwerving(?angle, ?engine, ?hwy, ?limit, ?speed), BadLTurnSignal(?angle,?single), TrafficIncident(?traffic), TrafficOnWay(?traffic)
HwySwerving SteerAngle(?angle), ABS(?angle) > 30, EngineSpeed(?engine), ?engine > 180, Highway(?hwy), ?hwy = True, SpeedLimit(?limit), VehicleSpeed(?speed), LESS(MULTIPLIER(?limit, 1.2), ?speed)

SteerAngle(?steer), ABS(?steer) > 90, EngineSpeed(?engine), ?engine > 180, LatAcc(?latacc), GREATER(ABS(?latacc), 2), Intersection(?intersect), ?intersect = True, VehicleSpeed(?speed), ?speed > 15,
SpeedLimit(?limit), CurrentSpeed(?curSpeed), GREATER(MULTIPLIER(?curSpeed, 0.4), ?limit)
RoughRoadMagnitude(?rrm), ?rrm > 180, Traction(?trac), ?trac = True, Brake(?brake), ?brake = True, SteerAngle(?steer), ABS(?steer) > 30, VehicleSpeed(?speed), ?speed < 20, SpeedLimit(?limit),

CurrentSpeed(?curSpeed), GREATER(MULTIPLIER(?curSpeed, 0.4), ?limit)

FastTurn

SlowRoughRoad

RoughRoadTurn RoughRoadMagnitude(?rrm), ?rrm > 180, Traction(?trac), ?trac = True, Brake(?brake), ?brake = True, Intersection(?intersect), NOT(?intersect),
RoughRoadWeather RoughRoadMagnitude(?rrm), ?rrm > 180, Traction(?trac), ?trac = True, Brake(?brake), ?brake = True, Weather(?x), NOT(GoodWeather(?x)), Intersection(?intersect), NOT(?intersect),
CarelessTurn SteerAngle(?steer), ABS(?steer) > 90, Intersection(?intersect), ?intersect = True, LatAcc(?latacc), GREATER(ABS(?latacc), 2), NOT(RightSi JON(?right)), NOT(L i ION(?left))

Intersection(?intersect), ?intersect = True, TrafficSignal(?signal), Close(?signal), LonAcc(?lonacc), ?lonacc > 2, Throttle(?throttle), ?throttle > 20, EngineSpeed(?engine), ?engine > 180,
SpeedLimit(?limit), CurrentSpeed(?curSpeed), GREATER(MULTIPLIER(?curSpeed, 0.4), ?limit)
Intersection(?intersect), ?intersect = True, TrafficSignal(?signal), Close(?signal), LonAcc(?lonacc), ?lonacc < -2, HardBrake(?brake), ?brake = True, SpeedLimit(?limit), CurrentSpeed(?curSpeed),
GREATER(MULTIPLIER(?curSpeed, 0.4), ?limit)
HeavyDuty Slope(?slope), ?slope > 0.8, Intersection(?intersect), ?intersect = True, Throttle(?throttle), ?throttle > 20, EngineSpeed(?engine), ?engine > 180, VehicleSpeed(?speed), ?speed < 20

TrafficSignSpeeding

TrafficSignHardBrake

Figure 6—Rules uses in our evaluations

is relatively static (e.g., the road map, locations of is¢er menced when a sensor predicate changed; thus, queries were
tions etc.), but some information varies with time (e.gs ga continuously evaluated.

prices, current traffic levels, traffic incidents etc.). \Wme In this experiment, we compamARLOG with the Naive
servatively assume that the static information such as map-strategy. During this run, we found thidaivehad an aver-

s cannot be completely downloaded onto to the phone, notage query response time of 899.24ms, baRLOG'S aver-

for storage reasons, but because maps are expensive, and #ge query response time was only 9ms (or almost 2 orders of
is not clear that developers can afford the up-front costs of magnitude smaller). Moreovet ARLOG detected 4 more
getting multi-user licenses for these maps. We believe it is events tharNaive becauséNaiveincurs worst-case latency
more likely that mapping companies will offer pay-as-you- for each evaluation, it misses many events. Figure 5 shows
go services where users can access maps online, and pay fahe screenshot of one of our apps that tracks these events on a
the information they access. However, mobile devices may map in real-time. The map shows the locations at which the
be able tacacherelatively static information and olNaive- various events were triggered; the dark marker shows events
Cachedstrategy first checks the local cache for cloud pred- detected bycARLOG, and the white marker bi{aive At

icates and acquires in parallel the uncached ones. Finally,many locationsNaivedetects at least one event wherer-
Cloud-Parallel Cachepplies caching t€loud-Parallel LOG detects several. However, there are at least 3 locations

Metrics. We use two metrics for comparison: theency wherecARLOG detects an event, biMaiveis unable to.

ratio is the ratio of the average query response latency of This experiment is adversarial along many dimensions: it
one of our alternative schemes to thatasrLOG. and the demonstrates a number of concurrent rules, uses many local

event ratiois the ratio of the number of events detected by @nd cloud sensors, and has a large number of events (nearly

CARLOG, to that detected by one of the alternatives. 1 per minute). Even under this settingARLOG's benefits
are evident. We now exploreARLOG's performance for a
5.2 CARLOG in Action wide range of queries and compare it with other candidate

Before discussing our trace-based evaluation, we demon_approaches.
strate the benefits o ARLOG's latency optimizations us- 5.3 Single Query Performance

ing results from an actual run afARLOG during a 40- We compare the performance@4RLOG against the oth-
minute drive (Figure 5). During this drive, an An- er candidate strategies discussed above for each query indi
droid smartphone was configured witbARLOG and e- vidually; that is, in these experiments, we assume thatanly
valuated 6 queriesoncurrently (Traf fi cSi gnSpeedi ng, single query is active at any given point in time. We cannot
Carel essTurn, HwySpeeding, TrafficSi gnHardBrake, conduct such comparisons using live experiments on the ve-

Shar pt urn, Sl owRoughRoad); these rules collectively in- hicle, since during each run of the vehicle we can only evalu-
voked 16 sensor predicates and 7 cloud predicates. We apate a single strategy and different runs may produce diifere
plied our scheme with multi-query optimization, since all 6 conditions. Instead, we used trace analysis to evaluate our
rules shared at least one predicate with another rule. Eachqueries for the 7 different strategies described above.

query was evaluated whenever one of its sensor predicates Figure 7 plots the relationship between latency ratio and
changed. After one evaluation completed, the next com- event ratio, for 6 of our queries (in what follows, we use

160 o

140 v

120 ,

100 <> CARLOG [Cloud Parallel Cached YV Naive Cached

80 ¥¢ Lowest Cost First O Cloud Parallel O Naive

L t Prob First
o 60 (O Lowest Prob Firs
£ 40 %
© v
2 20 | v & v
g > .
g 30 8 W e me
© 25 (o] ¥ [SlowLTurn|
a2 o 12 O
@0 [Tailgater]
2.0 * o @ O
15 08 Gy
' o 5 e

100 ngg@ . R e

0.5 o

0.05 I 5 3 4 5

Event Ratio
Figure 7—Performance of single queries with 3 cloud sensors
Rule Name SharpTumWeather SlowLTurn Tailgater HwyBadRTurnsignal HwyBadRTurnSignal FastTurn a” que”es |n the Set acqu”-e 3 dlstlnct C|Oud pred'cam, t
Latency(ms) 23.3 236 17.44 1631 18.36 8.18 frequency with which these predicates are evaluated varies
Frents 2462 962 1572 1480 1432 1860 widely across rules, resulting in the observed variability
Figure 8—CARLOG Latency and Event counts Simply adding parallelism to cloud predicate acquisition

doesn'’t provide any benefits; witness the pessimal perfor-

queries and rules interchangeably, since in Datalog, ayquer mance ofNaive(there is a discontinuity in the y-axis of Fig-
seeks to establish whether a given rule is true). In thisetubs ure 7 because dflaives poor performance). Its 2 orders of -
all the rules acquire 3 distinct (but different sets of) dou Magnitude worse performance is consistent with our experi-
predicates. To calibrate these figures, the absolute katenc mental results described in the previous subsection. Qumbi
and the number of events detected dWRLOG are shown ing short-circuiting with parallel cloud acquisitiol€loud-
in Figure 8; using these numbers together with the ratios in Parallel) helps significantly; as discussed above, this scheme
Figure 7, one can obtain absolute values for the latency andiS sometimes faster thaTnRLOG. However, its benefits are
events for each strategy. uneven: foiFast Tur n, this approach incurs:x3worse laten-
We first note that none of the alternative strategies domi- Cy on average because in this case cloud sensors are acquired
natecARLOG for any of the queries (i.e., none of the points more often tharcARLOG even though their probability of
in the figure is in the box defined by= 1 andy = 1). Put ~ being true may be small.
differently, CARLOG is strictly better than any other candi- Caching relatively static cloud predicates improves the
date schembothin terms of latency and in detected events. performance oNaiveandCloud-Paralle| but not by much.
For some queries, likeast Tur n, Lowest Prob Firsidetects There are two reasons for this. Many rules involve cloud
more events thanARLOG, but incurs more than twice the la- predicates accessing dynamic information (current speed,
tency on average. The reason for this is interesting: very of gas prices, weather etc.) that cannot be cached. Moreover,
ten,Lowest Prob Firsts faster tharcARLOG because itcan since every cloud predicate is calculated with respecteo th
short-circuit evaluation quicker, so it detects more egent car’s current position, a cached value is associated with a
However, when it cannot short-circuit, it may end up ac- given GPS reading. Because GPS is sampled discretely and
quiring a more expensive predicate which takes longer to can have errors, a cached value is useful only if the cloud
acquire. During these times, it can miss events, but on bal-predicate is evaluate at exactly the same GPS location, the
ance detects more events. For other queriesSlikaLTur n probability of which is not high. In our experiments, we used
andShar pTur n\at her, theCloud-Parallelalternatives are ~ “fuzzy” matching of GPS locations: if there is a cached read-
faster on average because these queries acquire cloud preddg from within a radius of the current location, the cached
icates less frequently (this acquisition is short-cirediby reading is used, instead of acquiring the cloud predicdte. T
sensor predicates) thanRLOG, but when they do the in- choice ofr is a function of the type of cloud predicate: for
curred latency which causes them to miss events, resultinginstance, road curvature can vary beyond 10m. In our exper-

in event ratios of between 1.2 and 1.5. iments, we used values from 10m to 1 mile: even so, even
The performance of each strategy varies by the query.so, caching is ineffective.
This is most evident foNaive where different rules expe- ParadoxicallyLowest Cost Firsthas consistently high-

rience a wide range of latency ratios (between 40 and 160)er latency cost thahowest Prob firstbut their event ratios
and event ratios (2 to over 4). The same observation holdsare comparable. Both of these approaches evaluate cloud-
for other strategies as well, albeit to a less degree. Ajhou predicates sequentially with short-circuiting. In gemhgettze

100 e
80 :
60 : O
40 15 » ®) v Vv %
el 14 O
= Sl b2 % e /f
m 12 |: v
> L
5 3.0 1-0<Q <> CARLOG QO Cloud Parallel
E 25 100 105 110 1B 1.2vo 125 130 ¥¢ Lowest Cost First V Naive Cache
50 \/4 () Lowest Prob First O Naive [Clouds]
' : [0 Cloud Parallel Cache
1.0 [T
0.5 O :
0'00 1 2 3 4
Event Ratio
Figure 9—Single query performance grouped by number of cloud sensor
Combination 4 Rules_SRules 12 Rules 16 Rules 20 Rules predicate. In all of these cases, short-circuiting is erygdo
Latency(ms) 320 343 394 454 492 and the single cloud predicate is invoked at the same time by
Events 5332 16768 22300 33836 55898

all three schemes.

Figure 10—OPT Latency and Event Counts for multiple queries .
5.4 Multiple Query Performance

o In realistic settings, multiple apps may issue concurrent
costs for cloud sensors are within a small factor of each oth- car| 06 queries. In &4, we argued that jointly optimizing
er, and the lowest-cost cloud predicate is unlikely to hbee t across multiple queries can provide a lower overall cost. In
lowest probability. Sol.owest Prob Firstdoes better by ac- thjs subsection, we explore various aspects &®L0G per-
cessing the least likely predicate, whose cost, even ifétigh formance with concurrent queries: the importance of multi-
reduce_s the need to access additional cloud predlcates mO&ﬁuery Optimization' the performance hit due to our heur;jsti
of the time. and how performance scales with increasing number of rules.

Finally, Figure 9 depicts the performance of queries Figure 11 depicts this performance where all results are
grouped by the number of cloud predicates they contain. normalized with respect to a strategy call@BT, for differ-
That is, for a given strategy (sayaive), we average all ent numbers of concurrent queries. This strategy uses dy-
queries withn sensors for each = 1...4, and repeat this namic programming to compute the optimal query execution
procedure across all strategies. This figure re-emphasizesrder for multiple queries, whileARLOG uses the greedy
the observation that no strategy dominatesRLOG (ex- heuristic proposed in 84. Als&ingle OPTuses single-query
cept Cloudl forCloud-Parallel Cachewhich is caused by optimization separately, instead of jointly optimizing@ss
the fact that all Cloud1 rules are defined with a cacheable queries. As before, to obtain absolute ratios and eventdete
cloud sensor, the cache will reduce the latency compared totions, Figure 10 depicts the absolute latencies and events f
any cloud fetching strategy.). However, whiNaiveand it- OPT.

s cached version are pathologically bad, most of the other e first note that ARLOG is the closest t©&PT amongst
schemes incur less than 50% additional latency, dng- all schemes. Because it is a heuristisBRLOG's multiquery
LOG detects up to 30% more events than these, as shown inpptimization generally has a latency ratio that is off thé-op
the inset in Figure 9. While it may seem that some of these mal by about 20-50% depending on the number of rules. Itis
alternatives may be competitive, we shall see in the next sec ynclear if guery concurrency in mobile apps will exceed 20,
tion that their performance can be worse in realistic sg#tin so a latency penalty of at most 50% may be what our heuris-
with multiple queries. Furthermore, 30% fewer events corre tic sees in practice. Interestingly, this comes at no change
sponds to missing 500-600 events in some cases, a substann the event ratio, becaus®@PT latencies are small enough
tial penalty. to begin with, the small increases do not perceptibly affect

There does not seem to be any monotonicity in perfor- event detections.
mance with respect to the number of cloud predicates: for Next,CARLOG'S multi-query optimization is essential for
exampleNaivehas a higher latency ratio with 1 cloud sensor performance.Single OPT which optimizes each query in-
than with 4. This is because the probability with which cloud dependently, detects half as many events or less and incurs
predicates are accessed more strongly dictates perfoemancup to 3x more latency. In our rule base, each rule shares at
than the number of cloud predicates. Interestingbuvest least one predicate with at least one other rule, and oui-mult
Cost first Lowest Prob firstand theCloud-Parallelvariants query optimization clearly short-circuits evaluation rhuc
perform the same asARLOG for rules with a single-cloud more effectively tharsingle OPT

Other candidate strategies perform worse tbarLOG. bottom-up, logic rewriting methods (magic sets), algabrai
Cloud-Parallelhas good latency performance compared to rewriting. Bottom-up evaluation [12, 15, 4, 6] was origi-
OPT andCARLOG, but can miss a third or more events. Both nally designed to eliminate redundant computation in reach
Lowest Cost firsaind Lowest Prob firsthave latency ratios ing a fixpoint in Datalog evaluation. Top-Down evalua-
above 1.5 and event ratios nearing 2. These event ratios sugtion [48, 49, 5] is a complementary approach with a sim-
gest that these approaches are unacceptable. ilar goal of eliminating redundant computation in goal or

Interestingly, unlike for the single-query cadsgwest- guery-directed Datalog evaluation. The Magic Sets method
cost first performs better thahowest Prob firstin terms [14,5, 7], and a related Counting method [5, 7], are rewgitin
of the event ratio, though the two have comparable averagemethods that insert extra IDB-predicates into the program;
latency ratios. We conjecture that the latter scheme morethese serve as constraints for bottom-up evaluation, thus e
often acquires an expensive cloud sensor first before shortdiminating redundant computations of intermediate predi-
circuiting evaluation, and so is more likely to miss events. cates. In contrast to all of these, our algorithms optimize

Finally, the latency and event ratios don’t change appre- the order of predicate acquisition for sensor and cloud-pred
ciably with increasing numbers of concurrent queries. For icates, a problem motivated by our specific setting.
exampleNaives latency ratio lies in the 25-30 range, while goolean predicate evaluation.The theory community has
Lowest Cost FirsandLowest Prob Firshave latency ratios explored optimizing the evaluation order of Boolean predi-
in the 1.5-2 range. This suggests that each scheme degradegates. Greineet al.[25] consider the tractability of various

in performance proportionally to the optimal anddar- sub-problems in this space, and our work is heavily informed
LOG. Put another way, relative to the other schentee- by theirs. However, they do not consider multi-query opti-
LOG does not scale appreciably worse than other schemes. mjzation. Laber [11] suggests re-ordering conjunctiveipre

6 Related Work icates with no negation based on the properties of the rela-

tional table on which the predicates are evaluated. Another
work by the same author [18] deals with more complicat-
ed queries that include negation, in a similar setting. €hes
kinds of optimizations are special cases of the evaluatfon o
game trees [44]. In general, these problems have not ad-
dressed a setting such as ours, where predicates have both
a cost and an associated probability. Closest is the work of

Industry Trends. Developments in industry are progress-
ing to the point where automotive apps will become much
more widespread than they currently are, at which point a
CARLOG-like platform will be indispensable. Several ap-
plications like OBDLIink [39] and Torque [46] are popular
in both Android and iOS, and allow the users to view very
limited real time OBD-Il scan data (a subset of information Kempeet al.[34], who prove a result similar to Theorem 4.1
available on the CAN bus). Torque also supports extensibili b t'pth : ¢ 't f pt' e dol t b 't. '
ty through plug-ins that can provide analysis and custochize utinthe context ot optimizing ad placement on websiles.
views. Automotive manufacturers are moving towards pro- Declarative Programming. Declarative programming us-
ducing closed automotive analytics systems like OnStdr [23 ing Datalog has been proposed in other contexts. Meld [3]
by General Motors, and Ford Sync [21] by Ford. Currently, uses Datalog to express the behavior of an ensemble of robot-
these systems do not provide an open API, but if and whens, and partitions the programinto code that runs on indafidu
car manufacturers decide to open up their systems for ap-devices. Snlog [17] uses Datalog for providing a similar ca-

p developmentCARLOG can be a candidate programming pability in the context of wireless sensor networks. Beyond
framework. differences in the settingc@RLOG is for cloud-enabled mo-

Automotive Sensing. Recent research has also explored Pil€ applications), these pieces of work do not consider la-
complementary problems in the automotive space, such ad€ncy optimization.

sensing driving behavior using vehicle sensors, phone sen-Partitioning cloud-enabled mobile app computations.A
sors, and specialized cameras [10, 2, 53, 54, 51, 52]. Thesdody of work has explored automatic partitioning of com-
algorithms can be modeled as individual predicatesAR- putations across a mobile device and the cloud, either to
LOG, so that higher level predicates can be defined using conserve energy [45, 16], or to improve throughput and
these detection algorithms. Prior work has also explored makespan for video applications [41]. A complementary
procedural abstractions for programming vehicles [204f an body of work has explored crowd-sourcing sensing tasks
focuses on tuning vehicles but does not consider latency op-from the cloud to the mobile device [43, 40]. Unlike this
timization, unlikecARLOG. Recent work has examined user body of work,CARLOG focuses on applications that use the
interface issues in the design of automotive apps [35], whic cloud as a source of dynamically-changing information.

is complementary to our work. Finally, while automotive Context Sensing.cARLOG is intellectually closest to a line
systems have long been known to have a large number ofof work that has considered continuous context monitoring
networked sensors, our work is unique in harnessing thesegn mobile devices. In this work, the general idea is to de-
networked sensors and designing a programming frameworkfine, for a given context (e.g., Walking or Running) monitor-
for automotive apps that access cloud-based information to ing task, an efficient execution order that, for example, us-
gether with car sensors. es the output of cheaper sensors to estimate, or determine
Datalog query optimization. Datalog optimization [13] when to trigger, a more expensive sensor. Work in this
has been studied over decades, many different optimiza-area has focused on permitting users to declaratively spec-
tion strategies have been proposed and well-studied. Therdafy multiple contexts of interest [32, 50] and then, giver op
are mainly 4 classes of optimization methods: top-down, timal execution orders for each individual context sensing

40

35

30 %3

25

20 /\ O°PT () Lowest Prob First <> Single Opt
'4(93, 15 <> CARLOG QO Cloud Parallel O Naive
o 10 Y¢ Lowest Cost First

5
? 3.50
T
T > <> 8 Rules
25 ¢ (12 Rules]

2.0 O 0’ [16 Rules]

' X @ 0

1.5 1@*

O

1.0 @) (;

0.5

0'00 1 2 3 4 5

Event Ratio

Figure 11—Multi-query performance

task, to try to jointly optimize energy usage across multi-
ple contexts. A complementary line of work has explored
CPU resource management and scheduling of these contin-
uous sensing tasks [31, 33]. Unlike this body of work, our
paper explores optimizing latency of access to cloud infor-
mation, leveraging the fact that Datalog’s declarativarfor
makes it possible to perform these optimizations at ruretim
transparent to the developer.

Closest to our work is ACE [38], which explores energy-
efficient continuous context sensing, but focuses, in part,
devising an optimal execution order for sensors on a mobile
phone. ACE tackles the problem of single query with nega-
tion, and presents an algorithm substantially similar tespu
but has not considered multi-query optimization. Further-
more, CARLOG focuses on latency of access to cloud sen- [11]
sors, a problem that is slightly different since latencytsos
are non-additive (parallel access to sensors does not addi-
tively increase latency). [12]

7 Conclusion

In this paper, we disCUSSARLOG, a programming sys-
tem for automotive appsCARLOG allows programmers to
succinctly express fusion of vehicle sensor and cloud infor
mation, a capability that can be used to detect events in au-
tomotive settings. It contains novel optimization algomiis [15]
designed to minimize the cost of predicate acquisition. Us-
ing experiments on a prototype oARLOG, we show that it
can provide significantly lower latency than parallel asces [16]
to cloud sensors and also detect 8-+hore results.

Acknowledgement¥Ve thank David Kempe for discussions
on PAC cost optimization.

8 References
[1] Society of automotive engineer&/E Diagnostic Test Modes(J1979)

(4]
(5]

(6]
[7]

g

(10]

(13]

(17]

(18]

2010.

[2] S. Al-Sultan, A. Al-Bayatti, and H. Zedan. Context-awatriver be-
havior detection system in intelligent transportationtsyss. IEEE
Transactions on Vehicular Technolod2(9), 2013.

[3] M. P. Ashley-Rollman, S. C. Goldstein, P. Lee, T. C. Mowand
P. Pillai. Meld: A declarative approach to programming enisies.

[19]
[20]

In Proceedings of the International Conference on Intelligenbots

and Systems (IRO)ages 2794-2800. IEEE/RSJ, 2007.)
F. Bancilhon. Naive evaluation of recursively defined relations

Springer, 1986.)))
F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. Magiets and

other strange ways to implement logic programs.Pinceedings of
the fifth ACM SIGACT-SIGMOD symposium on Principles of dadab

systemspages 1-15. ACM, 1985. o)
R. Bayer. Query evaluation and recursion in deductive database sys-

tems Bibliothek d. Fak. fur Mathematik u. Informatik, TUM, 1985
C. Beeri and R. Ramakrishnan. On the power of magiee journal
of logic programming10(3):255-299, 1991.)

Bing Traffic API. httE;//msdn.mlt_:rqsoft.com/en-uhM_arty.

B. Bishop and F. Fischer. Iris-integrated rule inferensystem.

Advancing Reasoning on the Web: Scalability and Commoasens

Rﬂage 18, 2010. . o .
.Canale and S. Malan. Analysis and classification ahha driving

behaviour in an urban environment€ognition, Technology & Work
4(3), 2002. _
R. ‘Carmo, T. Feder, Y. Kohayakawa, E. Laber, R. Motwani,
L. O'Callaghan, R. Panigrahy, and D. Thomas. Querying prinéor-
mation in databases: The conjunctive ca8€M Trans. Algorithms

3(12:, 2007.) o

S. Ceri, G. Gottlob, and L. Lavazza. Translation androjziation of
logic queries: the algebraic approach.RAroceedings of the 12th In-
ternational Conference on Very Large Data Baddsrgan Kaufmann

Publishers Inc., 1986.
S. Ceri, G. Gottlob, and L. Tanca. What you always waritekinow

about datalog (and never dared to askEE Transactions on Knowl-
edge and Data Engineerind (1), 1989.

14] S. Ceri, G. Gottlob, and L. %ancaogic programming and databases

Springer Verlag, 1990. =))
S. Ceri and L. Tanca. Optimization of systems of algebeguations

for evaluating datalog queries. Rroceedings of the 13th Internation-
al Conference on Very Large Data Basktorgan Kaufmann Publish-

ersInc., 1987. .
D. Chu, N.D. Lane, T. T.-T. Lai, C. Pang, X. Meng, Q. GuolFand

F. Zhao. Balancing energy, latency and accuracy for moleifesar
data classification. IfProceedings of the 9th ACM Conference on

Embedded Networked Sensor Sk/ﬂstems (Sensyal), 2011.
D. Chu, L. Popa, A. Tavakoli, J. M. Hellerstein, P. Lev& Shenker,

and |. Stoica. The design and implementation of a declaa@nsor
network system. IrProceedings of the 5th international conference
on Embedded networked sensor systems (Sensy80F), 2007.

F. Cicalese and E. S. Laber. A new strategy for queryimgep infor-
mation. InProceedings of the Thirty-seventh Annual ACM Symposium

on Theory of Computin% (STOC '0%ACM, 2005.
U. Feige.” A threshold of In n for approximating set covdmurnal of

the ACM ('\\]IACM,)45(4E, 1998. _ _
T. Flach, N. Mishra, L. Pedrosa, C. Riesz, and R. Govind&ar-

ma: towards personalized automotive tuning. Piroceedings of the

[29]

[30]
[31]
[32]
(33]
[34]
[35]
[36]

37
38

i
[41]

[42]
[43]

[44]
[45]

[46]

9th ACM Conference on Embedded Networked Sensor Systeges

135-148. ACM, 2011.
Ford Sync. http://www.ford.com/technolo%/sync/._
MKAGasFeed. http://www.mygasfeed.com/keys/api.
GM onStar. https://www.onstar.com/.

Google Direction API.

documentation/directions/.)
R. Greiner, R. Hayward, M. Jankowska, and M. Molloy. diitg op-

timal satisficing strategies for and-or tredstif. Intell., 170(1), 2006.
M. Haklay and P. Weber. Openstreetmap: User-genesdtedt maps.

Pervasive Corr1putir&?7(4), 2008.)
S. S. Huang, T. J. Green, and B. T. Loo. Datalog and emgrap-

plications: an interactive tutorial. IRroceedings of the 2011 ACM
SIGMOD International Conference on Management of da@ages

1213-1216. ACM, 2011.))
T. Imkamon, P. Saensom, P. Tangamchit, and P. Pongpaibetec-

tion of hazardous driving behavior using fuzzy logic. St Interna-
tional Conference on Electrical Engineering/Electronicdomputer,

Telecommunications and Information Technold@EE, 2008.
K. H. Johansson, M. Térngren, and L. Nielsen. "Vehiclplaations

of controller area network. Ihlandbook of Networked and Embedded

Control SystemsSpringer, 2005. o o
D. A. Johnson and M. M. Trivedi. Driving style recogwiti using

a smartphone as a sensor platform. Pimceedings of the 14th In-
ternational Conference on Intelligent Transportation t8yss (ITSC)

IEEE, 2011. _ _
Y. Ju, Y. Lee, J. Yu, C. Min, I. Shin, and J. Song. SymPhorscoor-

dinated sensing flow execution engine for concurrent malglesing
applications. IrProceedings of the 10th ACM Conference on Embed-

ded Network Sensor Systems (SensysACM, 2012.
S.Kang, J. Lee, H. Jang, H. Lee, Y. Lee, S. Park, T. Parit,JaSong.

Seemon: scalable and energy-efficient context monitoriagéwork
for sensor-rich mobile environments. Rroceedings of the 6th in-
ternational conference on Mobile systems, applicatioms services
gMobisys'OS ACM, 2008.

.Kang, Y. Lee, C. Min, Y. Ju, T. Park, J. Lee, Y. Rhee, dn8ong.
Orchestrator: An active resource orchestration framevarknobile
context monitoring in sensor-rich mobile environments.Phoceed-
ings of the International Conference on Pervasive Computnd

Communications (PerCom’'10)EEE, 2010. N
D. Kempe and M. Mahdian. A cascade model for extermadlith spon-

sored search. IProceedings of the 4th International Workshop on

Internet and Network Economics (WINE '08pringer-Verlag, 2008.
K. Lee, J. Flinn, T. Giuli, B. Noble, and C. Peplin. Amcehfying

user interface properties for vehicular applications.Pinceeding of
the 11th Annual International Conference on Mobile Systekppli-

cations, and Services (Mobisys'13CM, 2013.)
S. R. Madden, M. J. Franklin, J. M. Hellerstein, and WnigoTinydb:

An acquisitional query processing system for sensor ndssvokCM

Transactions on Database Systems (TQI38{1), 2005.
Mercedes-Benz mbrace. http://www.mbusa.com/mersfabrace.
S. Nath. ACE: exploiting correlation for energy-eféiot and contin-

uous context sensing. IRroceedings of the 10th international con-
ference on Mobile systems, applications, and services igysti2)

ACM, 2012.
OBDLink . http://www.scantool.net/. .
M.-R. Ra, B. Liu, T. L. Porta, and R. Govindan. Medusa: iydram-

ming Framework for Crowd-Sensing Applications. Rroceedings of
the 10th International Conference on Mobile Systems, Aafdins,

and Services (MobiSys'1,2012. o
M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetheraknd

R. Govindan. Odessa: Enabling interactive perceptioniegtins on
mobile devices. IrProceedings of the 9th International Conference

on Mobile Systems, Applications, and Services (MobiSys2Dil 1.
Rate My Driving. https://play.google.com/store/afgetails?id=com.

howsmydriving.)) .

L. Ravindranath, A. Thiagarajan, H. Balakrishnan, &dvadden.
Code in the air: simplifying sensing and coordination tasksmart-
phones. IrProceedings of the 12th Workshop on Mobile Computing

Systems & Applications (HotMobile’12ACM, 2012.)
. Snir. Lower bounds on probabilistic decision treekheoretical

Computer Sciencgages 69-82, 1985.)
K. T. Tekle, M. Gorbovitski, and Y. A. Liu. Graph queri¢gsrough

datalog optimizations. IRroceedings of the 12th international ACM
SIGPLAN symposium on Principles and practice of declagapivo-

%Uammin ACM, 2010.)))
orque: Engine Performance and Diagnostic Tool for okubtive

Professionals and Enthusiasts. http://torque-bhp.com/.

https://developers.googlendmaps/

[47]
(48]
[49]
(50]

[51]

(52]

(53]

(54]

J. D. Uliman. Principles of database systemGalgotia Publications,

1985.

L. Vieille. Recursive axioms in deductive databases:heT
query/subquery approach. Hxpert Database Conf1986.

L. Vieille. = A database-complete proof procedure based sld-

resolution. INICLP, pages 74-103, 1987.
Y. Wang, J. Lin, M. Annavaram, Q. A. Jacobson, J. HongKBsh-

namachari, and N. Sadeh. A framework of energy efficient faobi
sensing for automatic user state recognition. Phaceedings of the
7th International Conference on Mobile Systems, Applicetj and
Services (MobiSys’09ACM, 2009.

Y. Wang, J. Yang, H. Liu, Y. Chen, M. Gruteser, and R. P.riita
Sensing vehicle dynamics for determining driver phone useRro-
ceeding of the 11th Annual International Conference on NoBys-

tems, Applications, and Services, (MobiSys'¥8}M, 2013.
J. Yang, S. Sidhom, G. Chandrasekaran, T. Vu, H. Liu, Ncad,

Y. Chen, M. Gruteser, and R. P. Martin. Detecting driver ghon
use leveraging car speakers. Pmoceedings of the 17th annual in-
ternational conference on Mobile computing and network(gbi-

com’11) pages 97-108. ACM, 2011.
C.-W. You, M. Montes-de Oca, T. J. Bao, N. D. Lane, G. Qe

L. Torresani, and A. T. Campbell. Carsafe app: Alerting dspwand
distracted drivers using dual cameras on smartphondrolceedings
of the 11th international conference on Mobile systemsl|iegtpns,

and services (Mobisys'13ACM, 2013.))))
Z. Zhu and Q. Ji. Real time and non-intrusive driverdagé moni-

toring. InProceedings of The 7th International IEEE Conference on
Intelligent Transportation Systempages 657-662. IEEE, 2004.

A Optimality of Single Query with Negation where

Algorithm (1) relies on a crucial property: that, in any x-1 a-1
optimal order, a negated predicate (or, equivalently, atieg Ce=Cm+ Zz{cma |_| pmb} (8)
ed subtree of the proof tree) can be considered as an atomic = b=1
predicate with respect to other non-negated predicates. Th
proof of thisnegation atomicityequires two steps. The first x_1
step formalizes the intuitive exchange argument discussed Pc = |_| Pmb)

in 84, but assumes that negated predicates are not nested.

The second step proves negation atomicity for nested negat-

ed predicates as well. C 10
LEMMA 1. Negation Atomicity. Consider a query with K Cv=Cit ZZ{Ca |_| pb} (10)
positive predicates @, ...,Gpk, and L negative predicates

Gn1,---,GnL. Each positive (negative) predicates can be A
viewed as a single query with, if anypd(An) non-negated pn=1-— |—| Pb (11)
atoms. Any evaluation order interleaving atoms in a negated b=1
predicate Gy and atoms, if any, in other predicates,Gor
Gn atthe same level asfpwould cost more than evaluating K/+L K/'+L—1
the negated predicategas a whole. Cres=Cmpxs1) +) {Cma [pmb} 12)
PrROOFE According to previous discussion, the probability a=x+2 b=x+1
for predicateGpx and negated predicaf@y, to be true is, The expected cost of the whole query after moving
respectively: Gmx—1) to the position between andri, 1 is:
Apk Ani C¢ + Pe 1Cn1 + PNt [Crnix—1) + Pmx—1) (Cnz + PN2Cres)
Pok= [] Page Pri=1—] Pay (4) { (o) Pree-s 91}3)
ap=1 an=1 where
—2 a—1
Since each positive predicate has only non-negated atoms, * _ t

without loss of generality, we can treat each and every atom Co = Cm + Z {Cma I_l pmb} (14)

as a directly evaluable atom sibpy, ..., Gpk' } at the same
level asGp, whereK’ = 5K | Ay

Assume the evaluation order yields from Algorithm 1 is Pe = |_| Pmb (15)
{Gm1, - -,Gm+1) }» then according to Equation 3, we have

i—1

_ / _p\C*
Cm < Cr <.< Cm(K’+L) 5) Cni=Ci+Cy+(1 pl)Cresl!jl Pb (16)
1-pm~ 1-pme 1— PmkrsL)
Assume thaGny is a negated predicat®,, which has ;o ' a a2
An direct evaluable atoms, each with a costQaf, and a G = s Ca |_| Po+ (1~ Pa-1) resbljl Po (17)

probability of p,, to be true. Inside the negated predicate,
assume that the optimal evaluation order{is,...,ra,}, i
which would satisfy Equation 3 according to Theorem 4.1 PN = |—| Pb (18)
. Hence, the whole evaluation order would be |

Anl—
{(Gm,- -+, Gmx—1), 15+ - - TAnl, Gmxt1) - - - aGm(KUrL))}() Cn2 =Cis1+C\2+ (1— pay)Cres |_| Po (19)
6 b=i+1

Assume each predica&ny has a cost o€my and a prob-

o Anl a1 a-2
ability of pmy to be true. From here, we separate the proof Clip = { [Ca l_l Db+ (1— Pa_1)Cres l_l pb] }
b=i+1

into two parts, one for interleaving predicatesy,y # x as a Lo | ekl

whole with one negate@ny, the other for interleaving atom- (20)

s{ri,...,ra, } and{ry,...,ra,,} of any different negated

predicatess, 1 andGp2. We prove that in either case, the Anl

interleaving would cost more than the original optimal arde Pn2 = |_| Po (21)
Part 1: Consider movingSy,x of into the negation part b=it

betweernr; and Fis1. The expecte cost of the whole query Ci= (Cm(xﬂ) 4 pm(#l)cres) (22)

before the move is:
Note thatC/ is different fromCes in that if any atom
Cc + Pc(Cn + pn *Cres) (7 rj,j <ifails, instead of skipping all remaining atoms in the

negated predicate and evaluate the rest part of the query s{rx, ..., xan} ({fy1,---,fyan,}). Suppose the optimal eval-

tarting fromGy, x,1), the query would now evalua@y_1 uation order would be:
as well due to the interleaving. The key numeric relation ; " " ; (26)
to help see the insight of these complicated equations is the {1 Pt Ty yny }
following: Consider movingxa,, to the position between,; and
ryi+1)- Before moving, the coefficient ofa,,, which is also
Al a2 A the probability to evaluatga,,, is:
(1—p1)+ { l(l— Pa-1) pb] } =1-[]po (23)
aZS bEll k!:ll x—1 Am(x-1)
Thus in Equation 13, the coefficient Gfyx_1) is CPocamo = b|:|1 Pmb* bEll Po (27)
i+1 a—2 Whether atomsy;, j < i fail or not, atonrya,,, would still
Pped (1—p1)+ 23(1— Pa—1) |_| Po| + PN1 have to be evaluated, as long @S2, ..., TxAy, ,, are true.
&= b=1 Therefore, after moving, the coefficient remamga,-

§ i X Similar to the analysis ifPart 1, the coefficient foiCes
= Pe(I=[]Po+Pn1) =P (24) will remain the same, while in this case:
b—1

It can be seen from Equation 7 and 8 that the coefficien- Cres = Cc+ Pe* Clag (28)
t of Cyx—1) before moving is alsq;. Thus moving the
Gmx—1) into the negated rule, doesn’t change the coefficient where

of Cyx—1) in the expected cost of the query. Amy Amy—1
It is also quite obvious that the coefficient ©f before Ce=Cyiv) + Z {Ca pb} (29)
moving is pe [1)_1 Pv, Whereas after interleaving, the coeffi- a=r+2 b=+l
cient becomes:
Amy
L Pe=1-] P (30)
{ pé nljjj:;lh’]: pba J S | (25) b=i+1
1 Pp,j >
Pe -1 Po- K'+L K/'+L-1
With the coefficient ofCres being pe[1o", pb = Pi * Cles=Cmy+n+) Cmabrl Pmb (31)
. =y-+2 —
Pm(x—1) ﬂﬁi‘l Py in both cases, we can conclude that mov- o a er vt
ing Gx_1) to the position between andr; 1 would bring and the coefficient remains
an extra expected cost 0f — ppyy_1)) zij:]_Cj. Amx yi
With Theorem 4.1, we proved that it would have greater Chres= Ppxamg * ¢ L= [] Po ¢ % [] Po (32)
or equal cost to Move arBmy,y < X— 1 or anyGpy,y > X b=1 b=1
to the position betweeBy,_1) and Gmyx. Thus, combin- The only difference of interleaving lies in the coefficient

ing Theorem 4.1 with what we just proved above, we can of eachry;, j <i. Originally, the coefficient ofy;j, j <i is:
conclude that interleaving any predic&@gy,y # x with the
negated predicat&mx would have a higher expected cost Amx yu-1
than the original optimal evaluation order. Chyj = Poamg * Y 1= []Pop* [] Po (33)
. . . : b=1 b=1
Note that this conclusion equivalently proves that moving
outany atoms;, vi in Gmyto the any position betweenwould whereas after moving, it changes to the valu€gf;, be-
have greaterprequal cost. The reasonis that the Iatter-m_oveCause whether or nka, 1 < a < A1) fails, ryj would
ment can be interpreted as the following two steps. Moving ti|| have to be evaluated:
to the position betwee®m; and Gy, 1), Z < X, (the other -
case is symmetric) is equivalent to first movipgbeforery; r yuzb
and then move all predicates betwe®g, andGny into the Chyj=Pxam [] Po (34)
negated predicat®my. Both the first (Theorem 4.1) and sec- b=1
ond step (proved above) are proved of greater or equal cost. With 0 < 1 — ﬂﬁTi Pp < 1, movingrya,, to the position
Part 2: By a similar derivation, we can prove thatitwould betweerry; andry1) would have greater or equal cost than
cost more if we interleave atoms of any different negated original optimal order. According to Theorem 4.1, moving
predicate$s,; andGp2. To simplify the exposition, we omit anyr,; to the position after,, would have greater or equal
the closed-form expressions and explain the gist of them by cost. Thus we conclude that interleavingVi to the any po-

comparing the coefficients directly. sition betweeny; andry; 1), Vi would have greater or equal
To start with, assum&y; and G, are two consecu- cost.
tive negated predicate§mx and Gmy,y = x+ 1, in the op- By symmetry, we can also prove that moving to the

timal order. Gmx (Gmy) has a set of direct evaluable atoms position betweem,; andry, 1) would have greater or equal

cost than original optimal order. Similarly, according tioeF predicates an@px negated predicates. Each negated pred-

orem 4.1, moving anyy; to the position beforey; would icate has only one direct evaluable atoms. Moving one of
have greater or equal cost. Thus, we conclude that interleav these atoms out of apositively nestedegation to be at the
ing ryj, Vi to any position betweeny; andry, 1), Vi would position betweer,; andGy,,,1) can be interpreted as the
have greater or equal cost. following two steps. Assuming< X, it is equivalent to mov-

Since by now we know that interleaving neighboring ing all predicates betwedBp, andGpy into the beginning of
negated predicates would have greater or equal cost, considGpx and movingr; to the position befor&p,. The former
er interleaving any two negated predicates within a query. movement (Theorem 4.1) and the latter (Lemma 1), have al-
The interleaving process can be interpreted as three stepteady been proved to cost higher or equal. Hence, moving
s. First, move the two predicates to neighboring position- a direct evaluable atom out of one levelpwsitively nested
s, which cannot decrease the cost (Theorem 4.1). Secondpegation would cost more or equal. Now by induction, we
interleave two neighboring negated predicates, which alsocan prove moving a direct evaluable atom out of any level
cannot decrease the cost, as just proved. Finally, intexlea of discretelynested negated predicates would cost more or
predicates in between a negated predicate, which cannot deequal.
crease the cost as proved in Part 1. With Theorem 4.1 and Finally, the process of interleaving atoms with any lev-
above two part proof, we conclude that interleaving atoms of el of consecutivelyr discretelynested negation can be re-
any two negated predicat&ny Gmy, X,y would cost more solved into multipleMovelNand multipleMoveOUT Final-
or equal than the original optimal order. That concludes Par ly, with the proof of these two partsJovelNandMoveOUT
2. we draw the conclusion that any evaluation order interleav-
Having proved that interleaving any predicates (Part 1), ing atoms in negated predica®gy and atoms, if any, in oth-
or any atoms of any negated predicates (Part 2), with atomser predicates, positives,) or negatedGy), nested or not,
of any negated predicate would incur a higher or equal cost, would cost more than evaluating the negated pred@atas
we conclude here the proof blegation Atomicity [a whole. Note thaGny could actually be at any level of the
The above proof does not consider nested negation. Inexpansion tree. That concludes the prooNefsted Nega-
what follows, we prove that negation atomicity applies re- tion Atomicity , and of the optimality of Algorithm (1). O
cursively when negated predicates are nested. B Proof of NP-Completeness for Multiple
LEMMA 2. Nested Negation Atomicity. In the most gener- Queries without Negation
al case, interleaving any atoms of positive or negated predi \yg il reduce PCA optimization of multiple queries
cates, which are positively or negatively nested at anyileve ithout negation to the Set Cover Problem, which is known
would cost higher or equal to evaluating the negated predi- { pe NP-Complete. Considét queries,Qs, ...,Qu, each

cate at each level as ar\]/vhole. fi) ¢ Qi hasM; predicatesP1,...,Py;, each predicate has cost
PROOF. We separate the proof into two parts: one for mov- 44 nropability associated with it. Note that thdsgueries

ing an atom into any level of negated predicates, and the oth-p4, have shared predicates. We consider a simplified spe-
er for moving one atom of negated predicate out of any level ¢jg['case in this scenario. Assume all predicates have same
of negation. . . cost, and the probability of each predicate is close to 0, say
MovelN Consider a negated predicatgg has only one 15100, which means each predicate is almost false. To as-
level of nested negated atoms and all positive predi€a§es sociate with the Set Cover problem, we treat each predicate
has no negated atoms. As analyzed in the proof of Lemma 1,55 5 supset, with elements represented by queries thatrconta
without loss of generality, we could still assume therekdre 4t predicate. For example, predicBtappears ifk queries

direct evaluab/le atoms in all positive predicates. I_ntalileg Qi1,...,Qk, andP, is treated as a subset here, containing
Gpk, 1 < k <K’ with any nested negated ataml < i < By queriesQj1, ..., Qi as elements. Note thatH is false, all

can be interpreted as two exchanges. First, neyeinto of these queries will be false. The universe set consists all
Gni among its positive atoms. Second, m@g from posi- queriesQ,...,Qn. Since we assume that each predicate is

tive atoms into negated atoms @fy. According to Lemma ¢joge to false and has same cost, the Multi-query Cost Min-
1, both of these two steps would cost higher or equal, hencejm;ization Problem becomes finding the least predicates that
interleaving a d|r_ect evaluable atom into one level, or any yetermine all queries’ results, which is equivalent to firggli

level of consecutivelyiested negated predicates would cost he minimum number of subsets to cover the universe set (Set

more or equal.. _ , , Cover Problem).
Note that with Theorem 4.1, interleaving atoms into a

positive predicate would cost more or equal as well. There-
fore, by induction, we prove that interleaving a direct aeval
able atom into any level dliscretelynested negated predi-
cates would cost more or equal.

MoveOUT. In Part 1 of Lemma 1, we proved that moving
one direct evaluable atom out of a negated predicate would
cost more or equal. By induction, it would cost higher or
equal to move one direct evaluable atom out of any level of
consecutivelynegatively nested negated predicates.

Consider positive predicat&,y which haveA, positive

